poly1305.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504
  1. /**
  2. * \file poly1305.c
  3. *
  4. * \brief Poly1305 authentication algorithm.
  5. *
  6. * Copyright The Mbed TLS Contributors
  7. * SPDX-License-Identifier: Apache-2.0
  8. *
  9. * Licensed under the Apache License, Version 2.0 (the "License"); you may
  10. * not use this file except in compliance with the License.
  11. * You may obtain a copy of the License at
  12. *
  13. * http://www.apache.org/licenses/LICENSE-2.0
  14. *
  15. * Unless required by applicable law or agreed to in writing, software
  16. * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
  17. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  18. * See the License for the specific language governing permissions and
  19. * limitations under the License.
  20. */
  21. #include "common.h"
  22. #if defined(MBEDTLS_POLY1305_C)
  23. #include "mbedtls/poly1305.h"
  24. #include "mbedtls/platform_util.h"
  25. #include "mbedtls/error.h"
  26. #include <string.h>
  27. #include "mbedtls/platform.h"
  28. #if !defined(MBEDTLS_POLY1305_ALT)
  29. #define POLY1305_BLOCK_SIZE_BYTES (16U)
  30. /*
  31. * Our implementation is tuned for 32-bit platforms with a 64-bit multiplier.
  32. * However we provided an alternative for platforms without such a multiplier.
  33. */
  34. #if defined(MBEDTLS_NO_64BIT_MULTIPLICATION)
  35. static uint64_t mul64(uint32_t a, uint32_t b)
  36. {
  37. /* a = al + 2**16 ah, b = bl + 2**16 bh */
  38. const uint16_t al = (uint16_t) a;
  39. const uint16_t bl = (uint16_t) b;
  40. const uint16_t ah = a >> 16;
  41. const uint16_t bh = b >> 16;
  42. /* ab = al*bl + 2**16 (ah*bl + bl*bh) + 2**32 ah*bh */
  43. const uint32_t lo = (uint32_t) al * bl;
  44. const uint64_t me = (uint64_t) ((uint32_t) ah * bl) + (uint32_t) al * bh;
  45. const uint32_t hi = (uint32_t) ah * bh;
  46. return lo + (me << 16) + ((uint64_t) hi << 32);
  47. }
  48. #else
  49. static inline uint64_t mul64(uint32_t a, uint32_t b)
  50. {
  51. return (uint64_t) a * b;
  52. }
  53. #endif
  54. /**
  55. * \brief Process blocks with Poly1305.
  56. *
  57. * \param ctx The Poly1305 context.
  58. * \param nblocks Number of blocks to process. Note that this
  59. * function only processes full blocks.
  60. * \param input Buffer containing the input block(s).
  61. * \param needs_padding Set to 0 if the padding bit has already been
  62. * applied to the input data before calling this
  63. * function. Otherwise, set this parameter to 1.
  64. */
  65. static void poly1305_process(mbedtls_poly1305_context *ctx,
  66. size_t nblocks,
  67. const unsigned char *input,
  68. uint32_t needs_padding)
  69. {
  70. uint64_t d0, d1, d2, d3;
  71. uint32_t acc0, acc1, acc2, acc3, acc4;
  72. uint32_t r0, r1, r2, r3;
  73. uint32_t rs1, rs2, rs3;
  74. size_t offset = 0U;
  75. size_t i;
  76. r0 = ctx->r[0];
  77. r1 = ctx->r[1];
  78. r2 = ctx->r[2];
  79. r3 = ctx->r[3];
  80. rs1 = r1 + (r1 >> 2U);
  81. rs2 = r2 + (r2 >> 2U);
  82. rs3 = r3 + (r3 >> 2U);
  83. acc0 = ctx->acc[0];
  84. acc1 = ctx->acc[1];
  85. acc2 = ctx->acc[2];
  86. acc3 = ctx->acc[3];
  87. acc4 = ctx->acc[4];
  88. /* Process full blocks */
  89. for (i = 0U; i < nblocks; i++) {
  90. /* The input block is treated as a 128-bit little-endian integer */
  91. d0 = MBEDTLS_GET_UINT32_LE(input, offset + 0);
  92. d1 = MBEDTLS_GET_UINT32_LE(input, offset + 4);
  93. d2 = MBEDTLS_GET_UINT32_LE(input, offset + 8);
  94. d3 = MBEDTLS_GET_UINT32_LE(input, offset + 12);
  95. /* Compute: acc += (padded) block as a 130-bit integer */
  96. d0 += (uint64_t) acc0;
  97. d1 += (uint64_t) acc1 + (d0 >> 32U);
  98. d2 += (uint64_t) acc2 + (d1 >> 32U);
  99. d3 += (uint64_t) acc3 + (d2 >> 32U);
  100. acc0 = (uint32_t) d0;
  101. acc1 = (uint32_t) d1;
  102. acc2 = (uint32_t) d2;
  103. acc3 = (uint32_t) d3;
  104. acc4 += (uint32_t) (d3 >> 32U) + needs_padding;
  105. /* Compute: acc *= r */
  106. d0 = mul64(acc0, r0) +
  107. mul64(acc1, rs3) +
  108. mul64(acc2, rs2) +
  109. mul64(acc3, rs1);
  110. d1 = mul64(acc0, r1) +
  111. mul64(acc1, r0) +
  112. mul64(acc2, rs3) +
  113. mul64(acc3, rs2) +
  114. mul64(acc4, rs1);
  115. d2 = mul64(acc0, r2) +
  116. mul64(acc1, r1) +
  117. mul64(acc2, r0) +
  118. mul64(acc3, rs3) +
  119. mul64(acc4, rs2);
  120. d3 = mul64(acc0, r3) +
  121. mul64(acc1, r2) +
  122. mul64(acc2, r1) +
  123. mul64(acc3, r0) +
  124. mul64(acc4, rs3);
  125. acc4 *= r0;
  126. /* Compute: acc %= (2^130 - 5) (partial remainder) */
  127. d1 += (d0 >> 32);
  128. d2 += (d1 >> 32);
  129. d3 += (d2 >> 32);
  130. acc0 = (uint32_t) d0;
  131. acc1 = (uint32_t) d1;
  132. acc2 = (uint32_t) d2;
  133. acc3 = (uint32_t) d3;
  134. acc4 = (uint32_t) (d3 >> 32) + acc4;
  135. d0 = (uint64_t) acc0 + (acc4 >> 2) + (acc4 & 0xFFFFFFFCU);
  136. acc4 &= 3U;
  137. acc0 = (uint32_t) d0;
  138. d0 = (uint64_t) acc1 + (d0 >> 32U);
  139. acc1 = (uint32_t) d0;
  140. d0 = (uint64_t) acc2 + (d0 >> 32U);
  141. acc2 = (uint32_t) d0;
  142. d0 = (uint64_t) acc3 + (d0 >> 32U);
  143. acc3 = (uint32_t) d0;
  144. d0 = (uint64_t) acc4 + (d0 >> 32U);
  145. acc4 = (uint32_t) d0;
  146. offset += POLY1305_BLOCK_SIZE_BYTES;
  147. }
  148. ctx->acc[0] = acc0;
  149. ctx->acc[1] = acc1;
  150. ctx->acc[2] = acc2;
  151. ctx->acc[3] = acc3;
  152. ctx->acc[4] = acc4;
  153. }
  154. /**
  155. * \brief Compute the Poly1305 MAC
  156. *
  157. * \param ctx The Poly1305 context.
  158. * \param mac The buffer to where the MAC is written. Must be
  159. * big enough to contain the 16-byte MAC.
  160. */
  161. static void poly1305_compute_mac(const mbedtls_poly1305_context *ctx,
  162. unsigned char mac[16])
  163. {
  164. uint64_t d;
  165. uint32_t g0, g1, g2, g3, g4;
  166. uint32_t acc0, acc1, acc2, acc3, acc4;
  167. uint32_t mask;
  168. uint32_t mask_inv;
  169. acc0 = ctx->acc[0];
  170. acc1 = ctx->acc[1];
  171. acc2 = ctx->acc[2];
  172. acc3 = ctx->acc[3];
  173. acc4 = ctx->acc[4];
  174. /* Before adding 's' we ensure that the accumulator is mod 2^130 - 5.
  175. * We do this by calculating acc - (2^130 - 5), then checking if
  176. * the 131st bit is set. If it is, then reduce: acc -= (2^130 - 5)
  177. */
  178. /* Calculate acc + -(2^130 - 5) */
  179. d = ((uint64_t) acc0 + 5U);
  180. g0 = (uint32_t) d;
  181. d = ((uint64_t) acc1 + (d >> 32));
  182. g1 = (uint32_t) d;
  183. d = ((uint64_t) acc2 + (d >> 32));
  184. g2 = (uint32_t) d;
  185. d = ((uint64_t) acc3 + (d >> 32));
  186. g3 = (uint32_t) d;
  187. g4 = acc4 + (uint32_t) (d >> 32U);
  188. /* mask == 0xFFFFFFFF if 131st bit is set, otherwise mask == 0 */
  189. mask = (uint32_t) 0U - (g4 >> 2U);
  190. mask_inv = ~mask;
  191. /* If 131st bit is set then acc=g, otherwise, acc is unmodified */
  192. acc0 = (acc0 & mask_inv) | (g0 & mask);
  193. acc1 = (acc1 & mask_inv) | (g1 & mask);
  194. acc2 = (acc2 & mask_inv) | (g2 & mask);
  195. acc3 = (acc3 & mask_inv) | (g3 & mask);
  196. /* Add 's' */
  197. d = (uint64_t) acc0 + ctx->s[0];
  198. acc0 = (uint32_t) d;
  199. d = (uint64_t) acc1 + ctx->s[1] + (d >> 32U);
  200. acc1 = (uint32_t) d;
  201. d = (uint64_t) acc2 + ctx->s[2] + (d >> 32U);
  202. acc2 = (uint32_t) d;
  203. acc3 += ctx->s[3] + (uint32_t) (d >> 32U);
  204. /* Compute MAC (128 least significant bits of the accumulator) */
  205. MBEDTLS_PUT_UINT32_LE(acc0, mac, 0);
  206. MBEDTLS_PUT_UINT32_LE(acc1, mac, 4);
  207. MBEDTLS_PUT_UINT32_LE(acc2, mac, 8);
  208. MBEDTLS_PUT_UINT32_LE(acc3, mac, 12);
  209. }
  210. void mbedtls_poly1305_init(mbedtls_poly1305_context *ctx)
  211. {
  212. mbedtls_platform_zeroize(ctx, sizeof(mbedtls_poly1305_context));
  213. }
  214. void mbedtls_poly1305_free(mbedtls_poly1305_context *ctx)
  215. {
  216. if (ctx == NULL) {
  217. return;
  218. }
  219. mbedtls_platform_zeroize(ctx, sizeof(mbedtls_poly1305_context));
  220. }
  221. int mbedtls_poly1305_starts(mbedtls_poly1305_context *ctx,
  222. const unsigned char key[32])
  223. {
  224. /* r &= 0x0ffffffc0ffffffc0ffffffc0fffffff */
  225. ctx->r[0] = MBEDTLS_GET_UINT32_LE(key, 0) & 0x0FFFFFFFU;
  226. ctx->r[1] = MBEDTLS_GET_UINT32_LE(key, 4) & 0x0FFFFFFCU;
  227. ctx->r[2] = MBEDTLS_GET_UINT32_LE(key, 8) & 0x0FFFFFFCU;
  228. ctx->r[3] = MBEDTLS_GET_UINT32_LE(key, 12) & 0x0FFFFFFCU;
  229. ctx->s[0] = MBEDTLS_GET_UINT32_LE(key, 16);
  230. ctx->s[1] = MBEDTLS_GET_UINT32_LE(key, 20);
  231. ctx->s[2] = MBEDTLS_GET_UINT32_LE(key, 24);
  232. ctx->s[3] = MBEDTLS_GET_UINT32_LE(key, 28);
  233. /* Initial accumulator state */
  234. ctx->acc[0] = 0U;
  235. ctx->acc[1] = 0U;
  236. ctx->acc[2] = 0U;
  237. ctx->acc[3] = 0U;
  238. ctx->acc[4] = 0U;
  239. /* Queue initially empty */
  240. mbedtls_platform_zeroize(ctx->queue, sizeof(ctx->queue));
  241. ctx->queue_len = 0U;
  242. return 0;
  243. }
  244. int mbedtls_poly1305_update(mbedtls_poly1305_context *ctx,
  245. const unsigned char *input,
  246. size_t ilen)
  247. {
  248. size_t offset = 0U;
  249. size_t remaining = ilen;
  250. size_t queue_free_len;
  251. size_t nblocks;
  252. if ((remaining > 0U) && (ctx->queue_len > 0U)) {
  253. queue_free_len = (POLY1305_BLOCK_SIZE_BYTES - ctx->queue_len);
  254. if (ilen < queue_free_len) {
  255. /* Not enough data to complete the block.
  256. * Store this data with the other leftovers.
  257. */
  258. memcpy(&ctx->queue[ctx->queue_len],
  259. input,
  260. ilen);
  261. ctx->queue_len += ilen;
  262. remaining = 0U;
  263. } else {
  264. /* Enough data to produce a complete block */
  265. memcpy(&ctx->queue[ctx->queue_len],
  266. input,
  267. queue_free_len);
  268. ctx->queue_len = 0U;
  269. poly1305_process(ctx, 1U, ctx->queue, 1U); /* add padding bit */
  270. offset += queue_free_len;
  271. remaining -= queue_free_len;
  272. }
  273. }
  274. if (remaining >= POLY1305_BLOCK_SIZE_BYTES) {
  275. nblocks = remaining / POLY1305_BLOCK_SIZE_BYTES;
  276. poly1305_process(ctx, nblocks, &input[offset], 1U);
  277. offset += nblocks * POLY1305_BLOCK_SIZE_BYTES;
  278. remaining %= POLY1305_BLOCK_SIZE_BYTES;
  279. }
  280. if (remaining > 0U) {
  281. /* Store partial block */
  282. ctx->queue_len = remaining;
  283. memcpy(ctx->queue, &input[offset], remaining);
  284. }
  285. return 0;
  286. }
  287. int mbedtls_poly1305_finish(mbedtls_poly1305_context *ctx,
  288. unsigned char mac[16])
  289. {
  290. /* Process any leftover data */
  291. if (ctx->queue_len > 0U) {
  292. /* Add padding bit */
  293. ctx->queue[ctx->queue_len] = 1U;
  294. ctx->queue_len++;
  295. /* Pad with zeroes */
  296. memset(&ctx->queue[ctx->queue_len],
  297. 0,
  298. POLY1305_BLOCK_SIZE_BYTES - ctx->queue_len);
  299. poly1305_process(ctx, 1U, /* Process 1 block */
  300. ctx->queue, 0U); /* Already padded above */
  301. }
  302. poly1305_compute_mac(ctx, mac);
  303. return 0;
  304. }
  305. int mbedtls_poly1305_mac(const unsigned char key[32],
  306. const unsigned char *input,
  307. size_t ilen,
  308. unsigned char mac[16])
  309. {
  310. mbedtls_poly1305_context ctx;
  311. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  312. mbedtls_poly1305_init(&ctx);
  313. ret = mbedtls_poly1305_starts(&ctx, key);
  314. if (ret != 0) {
  315. goto cleanup;
  316. }
  317. ret = mbedtls_poly1305_update(&ctx, input, ilen);
  318. if (ret != 0) {
  319. goto cleanup;
  320. }
  321. ret = mbedtls_poly1305_finish(&ctx, mac);
  322. cleanup:
  323. mbedtls_poly1305_free(&ctx);
  324. return ret;
  325. }
  326. #endif /* MBEDTLS_POLY1305_ALT */
  327. #if defined(MBEDTLS_SELF_TEST)
  328. static const unsigned char test_keys[2][32] =
  329. {
  330. {
  331. 0x85, 0xd6, 0xbe, 0x78, 0x57, 0x55, 0x6d, 0x33,
  332. 0x7f, 0x44, 0x52, 0xfe, 0x42, 0xd5, 0x06, 0xa8,
  333. 0x01, 0x03, 0x80, 0x8a, 0xfb, 0x0d, 0xb2, 0xfd,
  334. 0x4a, 0xbf, 0xf6, 0xaf, 0x41, 0x49, 0xf5, 0x1b
  335. },
  336. {
  337. 0x1c, 0x92, 0x40, 0xa5, 0xeb, 0x55, 0xd3, 0x8a,
  338. 0xf3, 0x33, 0x88, 0x86, 0x04, 0xf6, 0xb5, 0xf0,
  339. 0x47, 0x39, 0x17, 0xc1, 0x40, 0x2b, 0x80, 0x09,
  340. 0x9d, 0xca, 0x5c, 0xbc, 0x20, 0x70, 0x75, 0xc0
  341. }
  342. };
  343. static const unsigned char test_data[2][127] =
  344. {
  345. {
  346. 0x43, 0x72, 0x79, 0x70, 0x74, 0x6f, 0x67, 0x72,
  347. 0x61, 0x70, 0x68, 0x69, 0x63, 0x20, 0x46, 0x6f,
  348. 0x72, 0x75, 0x6d, 0x20, 0x52, 0x65, 0x73, 0x65,
  349. 0x61, 0x72, 0x63, 0x68, 0x20, 0x47, 0x72, 0x6f,
  350. 0x75, 0x70
  351. },
  352. {
  353. 0x27, 0x54, 0x77, 0x61, 0x73, 0x20, 0x62, 0x72,
  354. 0x69, 0x6c, 0x6c, 0x69, 0x67, 0x2c, 0x20, 0x61,
  355. 0x6e, 0x64, 0x20, 0x74, 0x68, 0x65, 0x20, 0x73,
  356. 0x6c, 0x69, 0x74, 0x68, 0x79, 0x20, 0x74, 0x6f,
  357. 0x76, 0x65, 0x73, 0x0a, 0x44, 0x69, 0x64, 0x20,
  358. 0x67, 0x79, 0x72, 0x65, 0x20, 0x61, 0x6e, 0x64,
  359. 0x20, 0x67, 0x69, 0x6d, 0x62, 0x6c, 0x65, 0x20,
  360. 0x69, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x77,
  361. 0x61, 0x62, 0x65, 0x3a, 0x0a, 0x41, 0x6c, 0x6c,
  362. 0x20, 0x6d, 0x69, 0x6d, 0x73, 0x79, 0x20, 0x77,
  363. 0x65, 0x72, 0x65, 0x20, 0x74, 0x68, 0x65, 0x20,
  364. 0x62, 0x6f, 0x72, 0x6f, 0x67, 0x6f, 0x76, 0x65,
  365. 0x73, 0x2c, 0x0a, 0x41, 0x6e, 0x64, 0x20, 0x74,
  366. 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x6d, 0x65, 0x20,
  367. 0x72, 0x61, 0x74, 0x68, 0x73, 0x20, 0x6f, 0x75,
  368. 0x74, 0x67, 0x72, 0x61, 0x62, 0x65, 0x2e
  369. }
  370. };
  371. static const size_t test_data_len[2] =
  372. {
  373. 34U,
  374. 127U
  375. };
  376. static const unsigned char test_mac[2][16] =
  377. {
  378. {
  379. 0xa8, 0x06, 0x1d, 0xc1, 0x30, 0x51, 0x36, 0xc6,
  380. 0xc2, 0x2b, 0x8b, 0xaf, 0x0c, 0x01, 0x27, 0xa9
  381. },
  382. {
  383. 0x45, 0x41, 0x66, 0x9a, 0x7e, 0xaa, 0xee, 0x61,
  384. 0xe7, 0x08, 0xdc, 0x7c, 0xbc, 0xc5, 0xeb, 0x62
  385. }
  386. };
  387. /* Make sure no other definition is already present. */
  388. #undef ASSERT
  389. #define ASSERT(cond, args) \
  390. do \
  391. { \
  392. if (!(cond)) \
  393. { \
  394. if (verbose != 0) \
  395. mbedtls_printf args; \
  396. \
  397. return -1; \
  398. } \
  399. } \
  400. while (0)
  401. int mbedtls_poly1305_self_test(int verbose)
  402. {
  403. unsigned char mac[16];
  404. unsigned i;
  405. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  406. for (i = 0U; i < 2U; i++) {
  407. if (verbose != 0) {
  408. mbedtls_printf(" Poly1305 test %u ", i);
  409. }
  410. ret = mbedtls_poly1305_mac(test_keys[i],
  411. test_data[i],
  412. test_data_len[i],
  413. mac);
  414. ASSERT(0 == ret, ("error code: %i\n", ret));
  415. ASSERT(0 == memcmp(mac, test_mac[i], 16U), ("failed (mac)\n"));
  416. if (verbose != 0) {
  417. mbedtls_printf("passed\n");
  418. }
  419. }
  420. if (verbose != 0) {
  421. mbedtls_printf("\n");
  422. }
  423. return 0;
  424. }
  425. #endif /* MBEDTLS_SELF_TEST */
  426. #endif /* MBEDTLS_POLY1305_C */