nist_kw.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687
  1. /*
  2. * Implementation of NIST SP 800-38F key wrapping, supporting KW and KWP modes
  3. * only
  4. *
  5. * Copyright The Mbed TLS Contributors
  6. * SPDX-License-Identifier: Apache-2.0
  7. *
  8. * Licensed under the Apache License, Version 2.0 (the "License"); you may
  9. * not use this file except in compliance with the License.
  10. * You may obtain a copy of the License at
  11. *
  12. * http://www.apache.org/licenses/LICENSE-2.0
  13. *
  14. * Unless required by applicable law or agreed to in writing, software
  15. * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
  16. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  17. * See the License for the specific language governing permissions and
  18. * limitations under the License.
  19. */
  20. /*
  21. * Definition of Key Wrapping:
  22. * https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
  23. * RFC 3394 "Advanced Encryption Standard (AES) Key Wrap Algorithm"
  24. * RFC 5649 "Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm"
  25. *
  26. * Note: RFC 3394 defines different methodology for intermediate operations for
  27. * the wrapping and unwrapping operation than the definition in NIST SP 800-38F.
  28. */
  29. #include "common.h"
  30. #if defined(MBEDTLS_NIST_KW_C)
  31. #include "mbedtls/nist_kw.h"
  32. #include "mbedtls/platform_util.h"
  33. #include "mbedtls/error.h"
  34. #include "mbedtls/constant_time.h"
  35. #include <stdint.h>
  36. #include <string.h>
  37. #include "mbedtls/platform.h"
  38. #if !defined(MBEDTLS_NIST_KW_ALT)
  39. #define KW_SEMIBLOCK_LENGTH 8
  40. #define MIN_SEMIBLOCKS_COUNT 3
  41. /*! The 64-bit default integrity check value (ICV) for KW mode. */
  42. static const unsigned char NIST_KW_ICV1[] = { 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6 };
  43. /*! The 32-bit default integrity check value (ICV) for KWP mode. */
  44. static const unsigned char NIST_KW_ICV2[] = { 0xA6, 0x59, 0x59, 0xA6 };
  45. /*
  46. * Initialize context
  47. */
  48. void mbedtls_nist_kw_init(mbedtls_nist_kw_context *ctx)
  49. {
  50. memset(ctx, 0, sizeof(mbedtls_nist_kw_context));
  51. }
  52. int mbedtls_nist_kw_setkey(mbedtls_nist_kw_context *ctx,
  53. mbedtls_cipher_id_t cipher,
  54. const unsigned char *key,
  55. unsigned int keybits,
  56. const int is_wrap)
  57. {
  58. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  59. const mbedtls_cipher_info_t *cipher_info;
  60. cipher_info = mbedtls_cipher_info_from_values(cipher,
  61. keybits,
  62. MBEDTLS_MODE_ECB);
  63. if (cipher_info == NULL) {
  64. return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
  65. }
  66. if (cipher_info->block_size != 16) {
  67. return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
  68. }
  69. /*
  70. * SP 800-38F currently defines AES cipher as the only block cipher allowed:
  71. * "For KW and KWP, the underlying block cipher shall be approved, and the
  72. * block size shall be 128 bits. Currently, the AES block cipher, with key
  73. * lengths of 128, 192, or 256 bits, is the only block cipher that fits
  74. * this profile."
  75. * Currently we don't support other 128 bit block ciphers for key wrapping,
  76. * such as Camellia and Aria.
  77. */
  78. if (cipher != MBEDTLS_CIPHER_ID_AES) {
  79. return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
  80. }
  81. mbedtls_cipher_free(&ctx->cipher_ctx);
  82. if ((ret = mbedtls_cipher_setup(&ctx->cipher_ctx, cipher_info)) != 0) {
  83. return ret;
  84. }
  85. if ((ret = mbedtls_cipher_setkey(&ctx->cipher_ctx, key, keybits,
  86. is_wrap ? MBEDTLS_ENCRYPT :
  87. MBEDTLS_DECRYPT)
  88. ) != 0) {
  89. return ret;
  90. }
  91. return 0;
  92. }
  93. /*
  94. * Free context
  95. */
  96. void mbedtls_nist_kw_free(mbedtls_nist_kw_context *ctx)
  97. {
  98. mbedtls_cipher_free(&ctx->cipher_ctx);
  99. mbedtls_platform_zeroize(ctx, sizeof(mbedtls_nist_kw_context));
  100. }
  101. /*
  102. * Helper function for Xoring the uint64_t "t" with the encrypted A.
  103. * Defined in NIST SP 800-38F section 6.1
  104. */
  105. static void calc_a_xor_t(unsigned char A[KW_SEMIBLOCK_LENGTH], uint64_t t)
  106. {
  107. size_t i = 0;
  108. for (i = 0; i < sizeof(t); i++) {
  109. A[i] ^= (t >> ((sizeof(t) - 1 - i) * 8)) & 0xff;
  110. }
  111. }
  112. /*
  113. * KW-AE as defined in SP 800-38F section 6.2
  114. * KWP-AE as defined in SP 800-38F section 6.3
  115. */
  116. int mbedtls_nist_kw_wrap(mbedtls_nist_kw_context *ctx,
  117. mbedtls_nist_kw_mode_t mode,
  118. const unsigned char *input, size_t in_len,
  119. unsigned char *output, size_t *out_len, size_t out_size)
  120. {
  121. int ret = 0;
  122. size_t semiblocks = 0;
  123. size_t s;
  124. size_t olen, padlen = 0;
  125. uint64_t t = 0;
  126. unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2];
  127. unsigned char inbuff[KW_SEMIBLOCK_LENGTH * 2];
  128. *out_len = 0;
  129. /*
  130. * Generate the String to work on
  131. */
  132. if (mode == MBEDTLS_KW_MODE_KW) {
  133. if (out_size < in_len + KW_SEMIBLOCK_LENGTH) {
  134. return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
  135. }
  136. /*
  137. * According to SP 800-38F Table 1, the plaintext length for KW
  138. * must be between 2 to 2^54-1 semiblocks inclusive.
  139. */
  140. if (in_len < 16 ||
  141. #if SIZE_MAX > 0x1FFFFFFFFFFFFF8
  142. in_len > 0x1FFFFFFFFFFFFF8 ||
  143. #endif
  144. in_len % KW_SEMIBLOCK_LENGTH != 0) {
  145. return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
  146. }
  147. memcpy(output, NIST_KW_ICV1, KW_SEMIBLOCK_LENGTH);
  148. memmove(output + KW_SEMIBLOCK_LENGTH, input, in_len);
  149. } else {
  150. if (in_len % 8 != 0) {
  151. padlen = (8 - (in_len % 8));
  152. }
  153. if (out_size < in_len + KW_SEMIBLOCK_LENGTH + padlen) {
  154. return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
  155. }
  156. /*
  157. * According to SP 800-38F Table 1, the plaintext length for KWP
  158. * must be between 1 and 2^32-1 octets inclusive.
  159. */
  160. if (in_len < 1
  161. #if SIZE_MAX > 0xFFFFFFFF
  162. || in_len > 0xFFFFFFFF
  163. #endif
  164. ) {
  165. return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
  166. }
  167. memcpy(output, NIST_KW_ICV2, KW_SEMIBLOCK_LENGTH / 2);
  168. MBEDTLS_PUT_UINT32_BE((in_len & 0xffffffff), output,
  169. KW_SEMIBLOCK_LENGTH / 2);
  170. memcpy(output + KW_SEMIBLOCK_LENGTH, input, in_len);
  171. memset(output + KW_SEMIBLOCK_LENGTH + in_len, 0, padlen);
  172. }
  173. semiblocks = ((in_len + padlen) / KW_SEMIBLOCK_LENGTH) + 1;
  174. s = 6 * (semiblocks - 1);
  175. if (mode == MBEDTLS_KW_MODE_KWP
  176. && in_len <= KW_SEMIBLOCK_LENGTH) {
  177. memcpy(inbuff, output, 16);
  178. ret = mbedtls_cipher_update(&ctx->cipher_ctx,
  179. inbuff, 16, output, &olen);
  180. if (ret != 0) {
  181. goto cleanup;
  182. }
  183. } else {
  184. unsigned char *R2 = output + KW_SEMIBLOCK_LENGTH;
  185. unsigned char *A = output;
  186. /*
  187. * Do the wrapping function W, as defined in RFC 3394 section 2.2.1
  188. */
  189. if (semiblocks < MIN_SEMIBLOCKS_COUNT) {
  190. ret = MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
  191. goto cleanup;
  192. }
  193. /* Calculate intermediate values */
  194. for (t = 1; t <= s; t++) {
  195. memcpy(inbuff, A, KW_SEMIBLOCK_LENGTH);
  196. memcpy(inbuff + KW_SEMIBLOCK_LENGTH, R2, KW_SEMIBLOCK_LENGTH);
  197. ret = mbedtls_cipher_update(&ctx->cipher_ctx,
  198. inbuff, 16, outbuff, &olen);
  199. if (ret != 0) {
  200. goto cleanup;
  201. }
  202. memcpy(A, outbuff, KW_SEMIBLOCK_LENGTH);
  203. calc_a_xor_t(A, t);
  204. memcpy(R2, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH);
  205. R2 += KW_SEMIBLOCK_LENGTH;
  206. if (R2 >= output + (semiblocks * KW_SEMIBLOCK_LENGTH)) {
  207. R2 = output + KW_SEMIBLOCK_LENGTH;
  208. }
  209. }
  210. }
  211. *out_len = semiblocks * KW_SEMIBLOCK_LENGTH;
  212. cleanup:
  213. if (ret != 0) {
  214. memset(output, 0, semiblocks * KW_SEMIBLOCK_LENGTH);
  215. }
  216. mbedtls_platform_zeroize(inbuff, KW_SEMIBLOCK_LENGTH * 2);
  217. mbedtls_platform_zeroize(outbuff, KW_SEMIBLOCK_LENGTH * 2);
  218. return ret;
  219. }
  220. /*
  221. * W-1 function as defined in RFC 3394 section 2.2.2
  222. * This function assumes the following:
  223. * 1. Output buffer is at least of size ( semiblocks - 1 ) * KW_SEMIBLOCK_LENGTH.
  224. * 2. The input buffer is of size semiblocks * KW_SEMIBLOCK_LENGTH.
  225. * 3. Minimal number of semiblocks is 3.
  226. * 4. A is a buffer to hold the first semiblock of the input buffer.
  227. */
  228. static int unwrap(mbedtls_nist_kw_context *ctx,
  229. const unsigned char *input, size_t semiblocks,
  230. unsigned char A[KW_SEMIBLOCK_LENGTH],
  231. unsigned char *output, size_t *out_len)
  232. {
  233. int ret = 0;
  234. const size_t s = 6 * (semiblocks - 1);
  235. size_t olen;
  236. uint64_t t = 0;
  237. unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2];
  238. unsigned char inbuff[KW_SEMIBLOCK_LENGTH * 2];
  239. unsigned char *R = NULL;
  240. *out_len = 0;
  241. if (semiblocks < MIN_SEMIBLOCKS_COUNT) {
  242. return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
  243. }
  244. memcpy(A, input, KW_SEMIBLOCK_LENGTH);
  245. memmove(output, input + KW_SEMIBLOCK_LENGTH, (semiblocks - 1) * KW_SEMIBLOCK_LENGTH);
  246. R = output + (semiblocks - 2) * KW_SEMIBLOCK_LENGTH;
  247. /* Calculate intermediate values */
  248. for (t = s; t >= 1; t--) {
  249. calc_a_xor_t(A, t);
  250. memcpy(inbuff, A, KW_SEMIBLOCK_LENGTH);
  251. memcpy(inbuff + KW_SEMIBLOCK_LENGTH, R, KW_SEMIBLOCK_LENGTH);
  252. ret = mbedtls_cipher_update(&ctx->cipher_ctx,
  253. inbuff, 16, outbuff, &olen);
  254. if (ret != 0) {
  255. goto cleanup;
  256. }
  257. memcpy(A, outbuff, KW_SEMIBLOCK_LENGTH);
  258. /* Set R as LSB64 of outbuff */
  259. memcpy(R, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH);
  260. if (R == output) {
  261. R = output + (semiblocks - 2) * KW_SEMIBLOCK_LENGTH;
  262. } else {
  263. R -= KW_SEMIBLOCK_LENGTH;
  264. }
  265. }
  266. *out_len = (semiblocks - 1) * KW_SEMIBLOCK_LENGTH;
  267. cleanup:
  268. if (ret != 0) {
  269. memset(output, 0, (semiblocks - 1) * KW_SEMIBLOCK_LENGTH);
  270. }
  271. mbedtls_platform_zeroize(inbuff, sizeof(inbuff));
  272. mbedtls_platform_zeroize(outbuff, sizeof(outbuff));
  273. return ret;
  274. }
  275. /*
  276. * KW-AD as defined in SP 800-38F section 6.2
  277. * KWP-AD as defined in SP 800-38F section 6.3
  278. */
  279. int mbedtls_nist_kw_unwrap(mbedtls_nist_kw_context *ctx,
  280. mbedtls_nist_kw_mode_t mode,
  281. const unsigned char *input, size_t in_len,
  282. unsigned char *output, size_t *out_len, size_t out_size)
  283. {
  284. int ret = 0;
  285. size_t i, olen;
  286. unsigned char A[KW_SEMIBLOCK_LENGTH];
  287. unsigned char diff, bad_padding = 0;
  288. *out_len = 0;
  289. if (out_size < in_len - KW_SEMIBLOCK_LENGTH) {
  290. return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
  291. }
  292. if (mode == MBEDTLS_KW_MODE_KW) {
  293. /*
  294. * According to SP 800-38F Table 1, the ciphertext length for KW
  295. * must be between 3 to 2^54 semiblocks inclusive.
  296. */
  297. if (in_len < 24 ||
  298. #if SIZE_MAX > 0x200000000000000
  299. in_len > 0x200000000000000 ||
  300. #endif
  301. in_len % KW_SEMIBLOCK_LENGTH != 0) {
  302. return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
  303. }
  304. ret = unwrap(ctx, input, in_len / KW_SEMIBLOCK_LENGTH,
  305. A, output, out_len);
  306. if (ret != 0) {
  307. goto cleanup;
  308. }
  309. /* Check ICV in "constant-time" */
  310. diff = mbedtls_ct_memcmp(NIST_KW_ICV1, A, KW_SEMIBLOCK_LENGTH);
  311. if (diff != 0) {
  312. ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
  313. goto cleanup;
  314. }
  315. } else if (mode == MBEDTLS_KW_MODE_KWP) {
  316. size_t padlen = 0;
  317. uint32_t Plen;
  318. /*
  319. * According to SP 800-38F Table 1, the ciphertext length for KWP
  320. * must be between 2 to 2^29 semiblocks inclusive.
  321. */
  322. if (in_len < KW_SEMIBLOCK_LENGTH * 2 ||
  323. #if SIZE_MAX > 0x100000000
  324. in_len > 0x100000000 ||
  325. #endif
  326. in_len % KW_SEMIBLOCK_LENGTH != 0) {
  327. return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
  328. }
  329. if (in_len == KW_SEMIBLOCK_LENGTH * 2) {
  330. unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2];
  331. ret = mbedtls_cipher_update(&ctx->cipher_ctx,
  332. input, 16, outbuff, &olen);
  333. if (ret != 0) {
  334. goto cleanup;
  335. }
  336. memcpy(A, outbuff, KW_SEMIBLOCK_LENGTH);
  337. memcpy(output, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH);
  338. mbedtls_platform_zeroize(outbuff, sizeof(outbuff));
  339. *out_len = KW_SEMIBLOCK_LENGTH;
  340. } else {
  341. /* in_len >= KW_SEMIBLOCK_LENGTH * 3 */
  342. ret = unwrap(ctx, input, in_len / KW_SEMIBLOCK_LENGTH,
  343. A, output, out_len);
  344. if (ret != 0) {
  345. goto cleanup;
  346. }
  347. }
  348. /* Check ICV in "constant-time" */
  349. diff = mbedtls_ct_memcmp(NIST_KW_ICV2, A, KW_SEMIBLOCK_LENGTH / 2);
  350. if (diff != 0) {
  351. ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
  352. }
  353. Plen = MBEDTLS_GET_UINT32_BE(A, KW_SEMIBLOCK_LENGTH / 2);
  354. /*
  355. * Plen is the length of the plaintext, when the input is valid.
  356. * If Plen is larger than the plaintext and padding, padlen will be
  357. * larger than 8, because of the type wrap around.
  358. */
  359. padlen = in_len - KW_SEMIBLOCK_LENGTH - Plen;
  360. if (padlen > 7) {
  361. padlen &= 7;
  362. ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
  363. }
  364. /* Check padding in "constant-time" */
  365. for (diff = 0, i = 0; i < KW_SEMIBLOCK_LENGTH; i++) {
  366. if (i >= KW_SEMIBLOCK_LENGTH - padlen) {
  367. diff |= output[*out_len - KW_SEMIBLOCK_LENGTH + i];
  368. } else {
  369. bad_padding |= output[*out_len - KW_SEMIBLOCK_LENGTH + i];
  370. }
  371. }
  372. if (diff != 0) {
  373. ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
  374. }
  375. if (ret != 0) {
  376. goto cleanup;
  377. }
  378. memset(output + Plen, 0, padlen);
  379. *out_len = Plen;
  380. } else {
  381. ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
  382. goto cleanup;
  383. }
  384. cleanup:
  385. if (ret != 0) {
  386. memset(output, 0, *out_len);
  387. *out_len = 0;
  388. }
  389. mbedtls_platform_zeroize(&bad_padding, sizeof(bad_padding));
  390. mbedtls_platform_zeroize(&diff, sizeof(diff));
  391. mbedtls_platform_zeroize(A, sizeof(A));
  392. return ret;
  393. }
  394. #endif /* !MBEDTLS_NIST_KW_ALT */
  395. #if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_AES_C)
  396. #define KW_TESTS 3
  397. /*
  398. * Test vectors taken from NIST
  399. * https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/CAVP-TESTING-BLOCK-CIPHER-MODES#KW
  400. */
  401. static const unsigned int key_len[KW_TESTS] = { 16, 24, 32 };
  402. static const unsigned char kw_key[KW_TESTS][32] = {
  403. { 0x75, 0x75, 0xda, 0x3a, 0x93, 0x60, 0x7c, 0xc2,
  404. 0xbf, 0xd8, 0xce, 0xc7, 0xaa, 0xdf, 0xd9, 0xa6 },
  405. { 0x2d, 0x85, 0x26, 0x08, 0x1d, 0x02, 0xfb, 0x5b,
  406. 0x85, 0xf6, 0x9a, 0xc2, 0x86, 0xec, 0xd5, 0x7d,
  407. 0x40, 0xdf, 0x5d, 0xf3, 0x49, 0x47, 0x44, 0xd3 },
  408. { 0x11, 0x2a, 0xd4, 0x1b, 0x48, 0x56, 0xc7, 0x25,
  409. 0x4a, 0x98, 0x48, 0xd3, 0x0f, 0xdd, 0x78, 0x33,
  410. 0x5b, 0x03, 0x9a, 0x48, 0xa8, 0x96, 0x2c, 0x4d,
  411. 0x1c, 0xb7, 0x8e, 0xab, 0xd5, 0xda, 0xd7, 0x88 }
  412. };
  413. static const unsigned char kw_msg[KW_TESTS][40] = {
  414. { 0x42, 0x13, 0x6d, 0x3c, 0x38, 0x4a, 0x3e, 0xea,
  415. 0xc9, 0x5a, 0x06, 0x6f, 0xd2, 0x8f, 0xed, 0x3f },
  416. { 0x95, 0xc1, 0x1b, 0xf5, 0x35, 0x3a, 0xfe, 0xdb,
  417. 0x98, 0xfd, 0xd6, 0xc8, 0xca, 0x6f, 0xdb, 0x6d,
  418. 0xa5, 0x4b, 0x74, 0xb4, 0x99, 0x0f, 0xdc, 0x45,
  419. 0xc0, 0x9d, 0x15, 0x8f, 0x51, 0xce, 0x62, 0x9d,
  420. 0xe2, 0xaf, 0x26, 0xe3, 0x25, 0x0e, 0x6b, 0x4c },
  421. { 0x1b, 0x20, 0xbf, 0x19, 0x90, 0xb0, 0x65, 0xd7,
  422. 0x98, 0xe1, 0xb3, 0x22, 0x64, 0xad, 0x50, 0xa8,
  423. 0x74, 0x74, 0x92, 0xba, 0x09, 0xa0, 0x4d, 0xd1 }
  424. };
  425. static const size_t kw_msg_len[KW_TESTS] = { 16, 40, 24 };
  426. static const size_t kw_out_len[KW_TESTS] = { 24, 48, 32 };
  427. static const unsigned char kw_res[KW_TESTS][48] = {
  428. { 0x03, 0x1f, 0x6b, 0xd7, 0xe6, 0x1e, 0x64, 0x3d,
  429. 0xf6, 0x85, 0x94, 0x81, 0x6f, 0x64, 0xca, 0xa3,
  430. 0xf5, 0x6f, 0xab, 0xea, 0x25, 0x48, 0xf5, 0xfb },
  431. { 0x44, 0x3c, 0x6f, 0x15, 0x09, 0x83, 0x71, 0x91,
  432. 0x3e, 0x5c, 0x81, 0x4c, 0xa1, 0xa0, 0x42, 0xec,
  433. 0x68, 0x2f, 0x7b, 0x13, 0x6d, 0x24, 0x3a, 0x4d,
  434. 0x6c, 0x42, 0x6f, 0xc6, 0x97, 0x15, 0x63, 0xe8,
  435. 0xa1, 0x4a, 0x55, 0x8e, 0x09, 0x64, 0x16, 0x19,
  436. 0xbf, 0x03, 0xfc, 0xaf, 0x90, 0xb1, 0xfc, 0x2d },
  437. { 0xba, 0x8a, 0x25, 0x9a, 0x47, 0x1b, 0x78, 0x7d,
  438. 0xd5, 0xd5, 0x40, 0xec, 0x25, 0xd4, 0x3d, 0x87,
  439. 0x20, 0x0f, 0xda, 0xdc, 0x6d, 0x1f, 0x05, 0xd9,
  440. 0x16, 0x58, 0x4f, 0xa9, 0xf6, 0xcb, 0xf5, 0x12 }
  441. };
  442. static const unsigned char kwp_key[KW_TESTS][32] = {
  443. { 0x78, 0x65, 0xe2, 0x0f, 0x3c, 0x21, 0x65, 0x9a,
  444. 0xb4, 0x69, 0x0b, 0x62, 0x9c, 0xdf, 0x3c, 0xc4 },
  445. { 0xf5, 0xf8, 0x96, 0xa3, 0xbd, 0x2f, 0x4a, 0x98,
  446. 0x23, 0xef, 0x16, 0x2b, 0x00, 0xb8, 0x05, 0xd7,
  447. 0xde, 0x1e, 0xa4, 0x66, 0x26, 0x96, 0xa2, 0x58 },
  448. { 0x95, 0xda, 0x27, 0x00, 0xca, 0x6f, 0xd9, 0xa5,
  449. 0x25, 0x54, 0xee, 0x2a, 0x8d, 0xf1, 0x38, 0x6f,
  450. 0x5b, 0x94, 0xa1, 0xa6, 0x0e, 0xd8, 0xa4, 0xae,
  451. 0xf6, 0x0a, 0x8d, 0x61, 0xab, 0x5f, 0x22, 0x5a }
  452. };
  453. static const unsigned char kwp_msg[KW_TESTS][31] = {
  454. { 0xbd, 0x68, 0x43, 0xd4, 0x20, 0x37, 0x8d, 0xc8,
  455. 0x96 },
  456. { 0x6c, 0xcd, 0xd5, 0x85, 0x18, 0x40, 0x97, 0xeb,
  457. 0xd5, 0xc3, 0xaf, 0x3e, 0x47, 0xd0, 0x2c, 0x19,
  458. 0x14, 0x7b, 0x4d, 0x99, 0x5f, 0x96, 0x43, 0x66,
  459. 0x91, 0x56, 0x75, 0x8c, 0x13, 0x16, 0x8f },
  460. { 0xd1 }
  461. };
  462. static const size_t kwp_msg_len[KW_TESTS] = { 9, 31, 1 };
  463. static const unsigned char kwp_res[KW_TESTS][48] = {
  464. { 0x41, 0xec, 0xa9, 0x56, 0xd4, 0xaa, 0x04, 0x7e,
  465. 0xb5, 0xcf, 0x4e, 0xfe, 0x65, 0x96, 0x61, 0xe7,
  466. 0x4d, 0xb6, 0xf8, 0xc5, 0x64, 0xe2, 0x35, 0x00 },
  467. { 0x4e, 0x9b, 0xc2, 0xbc, 0xbc, 0x6c, 0x1e, 0x13,
  468. 0xd3, 0x35, 0xbc, 0xc0, 0xf7, 0x73, 0x6a, 0x88,
  469. 0xfa, 0x87, 0x53, 0x66, 0x15, 0xbb, 0x8e, 0x63,
  470. 0x8b, 0xcc, 0x81, 0x66, 0x84, 0x68, 0x17, 0x90,
  471. 0x67, 0xcf, 0xa9, 0x8a, 0x9d, 0x0e, 0x33, 0x26 },
  472. { 0x06, 0xba, 0x7a, 0xe6, 0xf3, 0x24, 0x8c, 0xfd,
  473. 0xcf, 0x26, 0x75, 0x07, 0xfa, 0x00, 0x1b, 0xc4 }
  474. };
  475. static const size_t kwp_out_len[KW_TESTS] = { 24, 40, 16 };
  476. int mbedtls_nist_kw_self_test(int verbose)
  477. {
  478. mbedtls_nist_kw_context ctx;
  479. unsigned char out[48];
  480. size_t olen;
  481. int i;
  482. int ret = 0;
  483. mbedtls_nist_kw_init(&ctx);
  484. for (i = 0; i < KW_TESTS; i++) {
  485. if (verbose != 0) {
  486. mbedtls_printf(" KW-AES-%u ", (unsigned int) key_len[i] * 8);
  487. }
  488. ret = mbedtls_nist_kw_setkey(&ctx, MBEDTLS_CIPHER_ID_AES,
  489. kw_key[i], key_len[i] * 8, 1);
  490. if (ret != 0) {
  491. if (verbose != 0) {
  492. mbedtls_printf(" KW: setup failed ");
  493. }
  494. goto end;
  495. }
  496. ret = mbedtls_nist_kw_wrap(&ctx, MBEDTLS_KW_MODE_KW, kw_msg[i],
  497. kw_msg_len[i], out, &olen, sizeof(out));
  498. if (ret != 0 || kw_out_len[i] != olen ||
  499. memcmp(out, kw_res[i], kw_out_len[i]) != 0) {
  500. if (verbose != 0) {
  501. mbedtls_printf("failed. ");
  502. }
  503. ret = 1;
  504. goto end;
  505. }
  506. if ((ret = mbedtls_nist_kw_setkey(&ctx, MBEDTLS_CIPHER_ID_AES,
  507. kw_key[i], key_len[i] * 8, 0))
  508. != 0) {
  509. if (verbose != 0) {
  510. mbedtls_printf(" KW: setup failed ");
  511. }
  512. goto end;
  513. }
  514. ret = mbedtls_nist_kw_unwrap(&ctx, MBEDTLS_KW_MODE_KW,
  515. out, olen, out, &olen, sizeof(out));
  516. if (ret != 0 || olen != kw_msg_len[i] ||
  517. memcmp(out, kw_msg[i], kw_msg_len[i]) != 0) {
  518. if (verbose != 0) {
  519. mbedtls_printf("failed\n");
  520. }
  521. ret = 1;
  522. goto end;
  523. }
  524. if (verbose != 0) {
  525. mbedtls_printf(" passed\n");
  526. }
  527. }
  528. for (i = 0; i < KW_TESTS; i++) {
  529. olen = sizeof(out);
  530. if (verbose != 0) {
  531. mbedtls_printf(" KWP-AES-%u ", (unsigned int) key_len[i] * 8);
  532. }
  533. ret = mbedtls_nist_kw_setkey(&ctx, MBEDTLS_CIPHER_ID_AES, kwp_key[i],
  534. key_len[i] * 8, 1);
  535. if (ret != 0) {
  536. if (verbose != 0) {
  537. mbedtls_printf(" KWP: setup failed ");
  538. }
  539. goto end;
  540. }
  541. ret = mbedtls_nist_kw_wrap(&ctx, MBEDTLS_KW_MODE_KWP, kwp_msg[i],
  542. kwp_msg_len[i], out, &olen, sizeof(out));
  543. if (ret != 0 || kwp_out_len[i] != olen ||
  544. memcmp(out, kwp_res[i], kwp_out_len[i]) != 0) {
  545. if (verbose != 0) {
  546. mbedtls_printf("failed. ");
  547. }
  548. ret = 1;
  549. goto end;
  550. }
  551. if ((ret = mbedtls_nist_kw_setkey(&ctx, MBEDTLS_CIPHER_ID_AES,
  552. kwp_key[i], key_len[i] * 8, 0))
  553. != 0) {
  554. if (verbose != 0) {
  555. mbedtls_printf(" KWP: setup failed ");
  556. }
  557. goto end;
  558. }
  559. ret = mbedtls_nist_kw_unwrap(&ctx, MBEDTLS_KW_MODE_KWP, out,
  560. olen, out, &olen, sizeof(out));
  561. if (ret != 0 || olen != kwp_msg_len[i] ||
  562. memcmp(out, kwp_msg[i], kwp_msg_len[i]) != 0) {
  563. if (verbose != 0) {
  564. mbedtls_printf("failed. ");
  565. }
  566. ret = 1;
  567. goto end;
  568. }
  569. if (verbose != 0) {
  570. mbedtls_printf(" passed\n");
  571. }
  572. }
  573. end:
  574. mbedtls_nist_kw_free(&ctx);
  575. if (verbose != 0) {
  576. mbedtls_printf("\n");
  577. }
  578. return ret;
  579. }
  580. #endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C */
  581. #endif /* MBEDTLS_NIST_KW_C */