ecp_internal_alt.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299
  1. /**
  2. * \file ecp_internal_alt.h
  3. *
  4. * \brief Function declarations for alternative implementation of elliptic curve
  5. * point arithmetic.
  6. */
  7. /*
  8. * Copyright The Mbed TLS Contributors
  9. * SPDX-License-Identifier: Apache-2.0
  10. *
  11. * Licensed under the Apache License, Version 2.0 (the "License"); you may
  12. * not use this file except in compliance with the License.
  13. * You may obtain a copy of the License at
  14. *
  15. * http://www.apache.org/licenses/LICENSE-2.0
  16. *
  17. * Unless required by applicable law or agreed to in writing, software
  18. * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
  19. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  20. * See the License for the specific language governing permissions and
  21. * limitations under the License.
  22. */
  23. /*
  24. * References:
  25. *
  26. * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
  27. * <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
  28. *
  29. * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
  30. * for elliptic curve cryptosystems. In : Cryptographic Hardware and
  31. * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
  32. * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
  33. *
  34. * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
  35. * render ECC resistant against Side Channel Attacks. IACR Cryptology
  36. * ePrint Archive, 2004, vol. 2004, p. 342.
  37. * <http://eprint.iacr.org/2004/342.pdf>
  38. *
  39. * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
  40. * <http://www.secg.org/sec2-v2.pdf>
  41. *
  42. * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
  43. * Curve Cryptography.
  44. *
  45. * [6] Digital Signature Standard (DSS), FIPS 186-4.
  46. * <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
  47. *
  48. * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
  49. * Security (TLS), RFC 4492.
  50. * <https://tools.ietf.org/search/rfc4492>
  51. *
  52. * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
  53. *
  54. * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
  55. * Springer Science & Business Media, 1 Aug 2000
  56. */
  57. #ifndef MBEDTLS_ECP_INTERNAL_H
  58. #define MBEDTLS_ECP_INTERNAL_H
  59. #include "mbedtls/build_info.h"
  60. #if defined(MBEDTLS_ECP_INTERNAL_ALT)
  61. /**
  62. * \brief Indicate if the Elliptic Curve Point module extension can
  63. * handle the group.
  64. *
  65. * \param grp The pointer to the elliptic curve group that will be the
  66. * basis of the cryptographic computations.
  67. *
  68. * \return Non-zero if successful.
  69. */
  70. unsigned char mbedtls_internal_ecp_grp_capable(const mbedtls_ecp_group *grp);
  71. /**
  72. * \brief Initialise the Elliptic Curve Point module extension.
  73. *
  74. * If mbedtls_internal_ecp_grp_capable returns true for a
  75. * group, this function has to be able to initialise the
  76. * module for it.
  77. *
  78. * This module can be a driver to a crypto hardware
  79. * accelerator, for which this could be an initialise function.
  80. *
  81. * \param grp The pointer to the group the module needs to be
  82. * initialised for.
  83. *
  84. * \return 0 if successful.
  85. */
  86. int mbedtls_internal_ecp_init(const mbedtls_ecp_group *grp);
  87. /**
  88. * \brief Frees and deallocates the Elliptic Curve Point module
  89. * extension.
  90. *
  91. * \param grp The pointer to the group the module was initialised for.
  92. */
  93. void mbedtls_internal_ecp_free(const mbedtls_ecp_group *grp);
  94. #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
  95. #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
  96. /**
  97. * \brief Randomize jacobian coordinates:
  98. * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
  99. *
  100. * \param grp Pointer to the group representing the curve.
  101. *
  102. * \param pt The point on the curve to be randomised, given with Jacobian
  103. * coordinates.
  104. *
  105. * \param f_rng A function pointer to the random number generator.
  106. *
  107. * \param p_rng A pointer to the random number generator state.
  108. *
  109. * \return 0 if successful.
  110. */
  111. int mbedtls_internal_ecp_randomize_jac(const mbedtls_ecp_group *grp,
  112. mbedtls_ecp_point *pt, int (*f_rng)(void *,
  113. unsigned char *,
  114. size_t),
  115. void *p_rng);
  116. #endif
  117. #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
  118. /**
  119. * \brief Addition: R = P + Q, mixed affine-Jacobian coordinates.
  120. *
  121. * The coordinates of Q must be normalized (= affine),
  122. * but those of P don't need to. R is not normalized.
  123. *
  124. * This function is used only as a subrutine of
  125. * ecp_mul_comb().
  126. *
  127. * Special cases: (1) P or Q is zero, (2) R is zero,
  128. * (3) P == Q.
  129. * None of these cases can happen as intermediate step in
  130. * ecp_mul_comb():
  131. * - at each step, P, Q and R are multiples of the base
  132. * point, the factor being less than its order, so none of
  133. * them is zero;
  134. * - Q is an odd multiple of the base point, P an even
  135. * multiple, due to the choice of precomputed points in the
  136. * modified comb method.
  137. * So branches for these cases do not leak secret information.
  138. *
  139. * We accept Q->Z being unset (saving memory in tables) as
  140. * meaning 1.
  141. *
  142. * Cost in field operations if done by [5] 3.22:
  143. * 1A := 8M + 3S
  144. *
  145. * \param grp Pointer to the group representing the curve.
  146. *
  147. * \param R Pointer to a point structure to hold the result.
  148. *
  149. * \param P Pointer to the first summand, given with Jacobian
  150. * coordinates
  151. *
  152. * \param Q Pointer to the second summand, given with affine
  153. * coordinates.
  154. *
  155. * \return 0 if successful.
  156. */
  157. int mbedtls_internal_ecp_add_mixed(const mbedtls_ecp_group *grp,
  158. mbedtls_ecp_point *R, const mbedtls_ecp_point *P,
  159. const mbedtls_ecp_point *Q);
  160. #endif
  161. /**
  162. * \brief Point doubling R = 2 P, Jacobian coordinates.
  163. *
  164. * Cost: 1D := 3M + 4S (A == 0)
  165. * 4M + 4S (A == -3)
  166. * 3M + 6S + 1a otherwise
  167. * when the implementation is based on the "dbl-1998-cmo-2"
  168. * doubling formulas in [8] and standard optimizations are
  169. * applied when curve parameter A is one of { 0, -3 }.
  170. *
  171. * \param grp Pointer to the group representing the curve.
  172. *
  173. * \param R Pointer to a point structure to hold the result.
  174. *
  175. * \param P Pointer to the point that has to be doubled, given with
  176. * Jacobian coordinates.
  177. *
  178. * \return 0 if successful.
  179. */
  180. #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
  181. int mbedtls_internal_ecp_double_jac(const mbedtls_ecp_group *grp,
  182. mbedtls_ecp_point *R, const mbedtls_ecp_point *P);
  183. #endif
  184. /**
  185. * \brief Normalize jacobian coordinates of an array of (pointers to)
  186. * points.
  187. *
  188. * Using Montgomery's trick to perform only one inversion mod P
  189. * the cost is:
  190. * 1N(t) := 1I + (6t - 3)M + 1S
  191. * (See for example Algorithm 10.3.4. in [9])
  192. *
  193. * This function is used only as a subrutine of
  194. * ecp_mul_comb().
  195. *
  196. * Warning: fails (returning an error) if one of the points is
  197. * zero!
  198. * This should never happen, see choice of w in ecp_mul_comb().
  199. *
  200. * \param grp Pointer to the group representing the curve.
  201. *
  202. * \param T Array of pointers to the points to normalise.
  203. *
  204. * \param t_len Number of elements in the array.
  205. *
  206. * \return 0 if successful,
  207. * an error if one of the points is zero.
  208. */
  209. #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
  210. int mbedtls_internal_ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
  211. mbedtls_ecp_point *T[], size_t t_len);
  212. #endif
  213. /**
  214. * \brief Normalize jacobian coordinates so that Z == 0 || Z == 1.
  215. *
  216. * Cost in field operations if done by [5] 3.2.1:
  217. * 1N := 1I + 3M + 1S
  218. *
  219. * \param grp Pointer to the group representing the curve.
  220. *
  221. * \param pt pointer to the point to be normalised. This is an
  222. * input/output parameter.
  223. *
  224. * \return 0 if successful.
  225. */
  226. #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
  227. int mbedtls_internal_ecp_normalize_jac(const mbedtls_ecp_group *grp,
  228. mbedtls_ecp_point *pt);
  229. #endif
  230. #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
  231. #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
  232. #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
  233. int mbedtls_internal_ecp_double_add_mxz(const mbedtls_ecp_group *grp,
  234. mbedtls_ecp_point *R,
  235. mbedtls_ecp_point *S,
  236. const mbedtls_ecp_point *P,
  237. const mbedtls_ecp_point *Q,
  238. const mbedtls_mpi *d);
  239. #endif
  240. /**
  241. * \brief Randomize projective x/z coordinates:
  242. * (X, Z) -> (l X, l Z) for random l
  243. *
  244. * \param grp pointer to the group representing the curve
  245. *
  246. * \param P the point on the curve to be randomised given with
  247. * projective coordinates. This is an input/output parameter.
  248. *
  249. * \param f_rng a function pointer to the random number generator
  250. *
  251. * \param p_rng a pointer to the random number generator state
  252. *
  253. * \return 0 if successful
  254. */
  255. #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
  256. int mbedtls_internal_ecp_randomize_mxz(const mbedtls_ecp_group *grp,
  257. mbedtls_ecp_point *P, int (*f_rng)(void *,
  258. unsigned char *,
  259. size_t),
  260. void *p_rng);
  261. #endif
  262. /**
  263. * \brief Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
  264. *
  265. * \param grp pointer to the group representing the curve
  266. *
  267. * \param P pointer to the point to be normalised. This is an
  268. * input/output parameter.
  269. *
  270. * \return 0 if successful
  271. */
  272. #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
  273. int mbedtls_internal_ecp_normalize_mxz(const mbedtls_ecp_group *grp,
  274. mbedtls_ecp_point *P);
  275. #endif
  276. #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
  277. #endif /* MBEDTLS_ECP_INTERNAL_ALT */
  278. #endif /* ecp_internal_alt.h */