ecdsa.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879
  1. /*
  2. * Elliptic curve DSA
  3. *
  4. * Copyright The Mbed TLS Contributors
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Licensed under the Apache License, Version 2.0 (the "License"); you may
  8. * not use this file except in compliance with the License.
  9. * You may obtain a copy of the License at
  10. *
  11. * http://www.apache.org/licenses/LICENSE-2.0
  12. *
  13. * Unless required by applicable law or agreed to in writing, software
  14. * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
  15. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  16. * See the License for the specific language governing permissions and
  17. * limitations under the License.
  18. */
  19. /*
  20. * References:
  21. *
  22. * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
  23. */
  24. #include "common.h"
  25. #if defined(MBEDTLS_ECDSA_C)
  26. #include "mbedtls/ecdsa.h"
  27. #include "mbedtls/asn1write.h"
  28. #include <string.h>
  29. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  30. #include "mbedtls/hmac_drbg.h"
  31. #endif
  32. #include "mbedtls/platform.h"
  33. #include "mbedtls/platform_util.h"
  34. #include "mbedtls/error.h"
  35. #if defined(MBEDTLS_ECP_RESTARTABLE)
  36. /*
  37. * Sub-context for ecdsa_verify()
  38. */
  39. struct mbedtls_ecdsa_restart_ver {
  40. mbedtls_mpi u1, u2; /* intermediate values */
  41. enum { /* what to do next? */
  42. ecdsa_ver_init = 0, /* getting started */
  43. ecdsa_ver_muladd, /* muladd step */
  44. } state;
  45. };
  46. /*
  47. * Init verify restart sub-context
  48. */
  49. static void ecdsa_restart_ver_init(mbedtls_ecdsa_restart_ver_ctx *ctx)
  50. {
  51. mbedtls_mpi_init(&ctx->u1);
  52. mbedtls_mpi_init(&ctx->u2);
  53. ctx->state = ecdsa_ver_init;
  54. }
  55. /*
  56. * Free the components of a verify restart sub-context
  57. */
  58. static void ecdsa_restart_ver_free(mbedtls_ecdsa_restart_ver_ctx *ctx)
  59. {
  60. if (ctx == NULL) {
  61. return;
  62. }
  63. mbedtls_mpi_free(&ctx->u1);
  64. mbedtls_mpi_free(&ctx->u2);
  65. ecdsa_restart_ver_init(ctx);
  66. }
  67. /*
  68. * Sub-context for ecdsa_sign()
  69. */
  70. struct mbedtls_ecdsa_restart_sig {
  71. int sign_tries;
  72. int key_tries;
  73. mbedtls_mpi k; /* per-signature random */
  74. mbedtls_mpi r; /* r value */
  75. enum { /* what to do next? */
  76. ecdsa_sig_init = 0, /* getting started */
  77. ecdsa_sig_mul, /* doing ecp_mul() */
  78. ecdsa_sig_modn, /* mod N computations */
  79. } state;
  80. };
  81. /*
  82. * Init verify sign sub-context
  83. */
  84. static void ecdsa_restart_sig_init(mbedtls_ecdsa_restart_sig_ctx *ctx)
  85. {
  86. ctx->sign_tries = 0;
  87. ctx->key_tries = 0;
  88. mbedtls_mpi_init(&ctx->k);
  89. mbedtls_mpi_init(&ctx->r);
  90. ctx->state = ecdsa_sig_init;
  91. }
  92. /*
  93. * Free the components of a sign restart sub-context
  94. */
  95. static void ecdsa_restart_sig_free(mbedtls_ecdsa_restart_sig_ctx *ctx)
  96. {
  97. if (ctx == NULL) {
  98. return;
  99. }
  100. mbedtls_mpi_free(&ctx->k);
  101. mbedtls_mpi_free(&ctx->r);
  102. }
  103. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  104. /*
  105. * Sub-context for ecdsa_sign_det()
  106. */
  107. struct mbedtls_ecdsa_restart_det {
  108. mbedtls_hmac_drbg_context rng_ctx; /* DRBG state */
  109. enum { /* what to do next? */
  110. ecdsa_det_init = 0, /* getting started */
  111. ecdsa_det_sign, /* make signature */
  112. } state;
  113. };
  114. /*
  115. * Init verify sign_det sub-context
  116. */
  117. static void ecdsa_restart_det_init(mbedtls_ecdsa_restart_det_ctx *ctx)
  118. {
  119. mbedtls_hmac_drbg_init(&ctx->rng_ctx);
  120. ctx->state = ecdsa_det_init;
  121. }
  122. /*
  123. * Free the components of a sign_det restart sub-context
  124. */
  125. static void ecdsa_restart_det_free(mbedtls_ecdsa_restart_det_ctx *ctx)
  126. {
  127. if (ctx == NULL) {
  128. return;
  129. }
  130. mbedtls_hmac_drbg_free(&ctx->rng_ctx);
  131. ecdsa_restart_det_init(ctx);
  132. }
  133. #endif /* MBEDTLS_ECDSA_DETERMINISTIC */
  134. #define ECDSA_RS_ECP (rs_ctx == NULL ? NULL : &rs_ctx->ecp)
  135. /* Utility macro for checking and updating ops budget */
  136. #define ECDSA_BUDGET(ops) \
  137. MBEDTLS_MPI_CHK(mbedtls_ecp_check_budget(grp, ECDSA_RS_ECP, ops));
  138. /* Call this when entering a function that needs its own sub-context */
  139. #define ECDSA_RS_ENTER(SUB) do { \
  140. /* reset ops count for this call if top-level */ \
  141. if (rs_ctx != NULL && rs_ctx->ecp.depth++ == 0) \
  142. rs_ctx->ecp.ops_done = 0; \
  143. \
  144. /* set up our own sub-context if needed */ \
  145. if (mbedtls_ecp_restart_is_enabled() && \
  146. rs_ctx != NULL && rs_ctx->SUB == NULL) \
  147. { \
  148. rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB)); \
  149. if (rs_ctx->SUB == NULL) \
  150. return MBEDTLS_ERR_ECP_ALLOC_FAILED; \
  151. \
  152. ecdsa_restart_## SUB ##_init(rs_ctx->SUB); \
  153. } \
  154. } while (0)
  155. /* Call this when leaving a function that needs its own sub-context */
  156. #define ECDSA_RS_LEAVE(SUB) do { \
  157. /* clear our sub-context when not in progress (done or error) */ \
  158. if (rs_ctx != NULL && rs_ctx->SUB != NULL && \
  159. ret != MBEDTLS_ERR_ECP_IN_PROGRESS) \
  160. { \
  161. ecdsa_restart_## SUB ##_free(rs_ctx->SUB); \
  162. mbedtls_free(rs_ctx->SUB); \
  163. rs_ctx->SUB = NULL; \
  164. } \
  165. \
  166. if (rs_ctx != NULL) \
  167. rs_ctx->ecp.depth--; \
  168. } while (0)
  169. #else /* MBEDTLS_ECP_RESTARTABLE */
  170. #define ECDSA_RS_ECP NULL
  171. #define ECDSA_BUDGET(ops) /* no-op; for compatibility */
  172. #define ECDSA_RS_ENTER(SUB) (void) rs_ctx
  173. #define ECDSA_RS_LEAVE(SUB) (void) rs_ctx
  174. #endif /* MBEDTLS_ECP_RESTARTABLE */
  175. #if defined(MBEDTLS_ECDSA_DETERMINISTIC) || \
  176. !defined(MBEDTLS_ECDSA_SIGN_ALT) || \
  177. !defined(MBEDTLS_ECDSA_VERIFY_ALT)
  178. /*
  179. * Derive a suitable integer for group grp from a buffer of length len
  180. * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3
  181. */
  182. static int derive_mpi(const mbedtls_ecp_group *grp, mbedtls_mpi *x,
  183. const unsigned char *buf, size_t blen)
  184. {
  185. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  186. size_t n_size = (grp->nbits + 7) / 8;
  187. size_t use_size = blen > n_size ? n_size : blen;
  188. MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(x, buf, use_size));
  189. if (use_size * 8 > grp->nbits) {
  190. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(x, use_size * 8 - grp->nbits));
  191. }
  192. /* While at it, reduce modulo N */
  193. if (mbedtls_mpi_cmp_mpi(x, &grp->N) >= 0) {
  194. MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(x, x, &grp->N));
  195. }
  196. cleanup:
  197. return ret;
  198. }
  199. #endif /* ECDSA_DETERMINISTIC || !ECDSA_SIGN_ALT || !ECDSA_VERIFY_ALT */
  200. #if !defined(MBEDTLS_ECDSA_SIGN_ALT)
  201. /*
  202. * Compute ECDSA signature of a hashed message (SEC1 4.1.3)
  203. * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message)
  204. */
  205. int mbedtls_ecdsa_sign_restartable(mbedtls_ecp_group *grp,
  206. mbedtls_mpi *r, mbedtls_mpi *s,
  207. const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
  208. int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
  209. int (*f_rng_blind)(void *, unsigned char *, size_t),
  210. void *p_rng_blind,
  211. mbedtls_ecdsa_restart_ctx *rs_ctx)
  212. {
  213. int ret, key_tries, sign_tries;
  214. int *p_sign_tries = &sign_tries, *p_key_tries = &key_tries;
  215. mbedtls_ecp_point R;
  216. mbedtls_mpi k, e, t;
  217. mbedtls_mpi *pk = &k, *pr = r;
  218. /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
  219. if (!mbedtls_ecdsa_can_do(grp->id) || grp->N.p == NULL) {
  220. return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
  221. }
  222. /* Make sure d is in range 1..n-1 */
  223. if (mbedtls_mpi_cmp_int(d, 1) < 0 || mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
  224. return MBEDTLS_ERR_ECP_INVALID_KEY;
  225. }
  226. mbedtls_ecp_point_init(&R);
  227. mbedtls_mpi_init(&k); mbedtls_mpi_init(&e); mbedtls_mpi_init(&t);
  228. ECDSA_RS_ENTER(sig);
  229. #if defined(MBEDTLS_ECP_RESTARTABLE)
  230. if (rs_ctx != NULL && rs_ctx->sig != NULL) {
  231. /* redirect to our context */
  232. p_sign_tries = &rs_ctx->sig->sign_tries;
  233. p_key_tries = &rs_ctx->sig->key_tries;
  234. pk = &rs_ctx->sig->k;
  235. pr = &rs_ctx->sig->r;
  236. /* jump to current step */
  237. if (rs_ctx->sig->state == ecdsa_sig_mul) {
  238. goto mul;
  239. }
  240. if (rs_ctx->sig->state == ecdsa_sig_modn) {
  241. goto modn;
  242. }
  243. }
  244. #endif /* MBEDTLS_ECP_RESTARTABLE */
  245. *p_sign_tries = 0;
  246. do {
  247. if ((*p_sign_tries)++ > 10) {
  248. ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
  249. goto cleanup;
  250. }
  251. /*
  252. * Steps 1-3: generate a suitable ephemeral keypair
  253. * and set r = xR mod n
  254. */
  255. *p_key_tries = 0;
  256. do {
  257. if ((*p_key_tries)++ > 10) {
  258. ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
  259. goto cleanup;
  260. }
  261. MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, pk, f_rng, p_rng));
  262. #if defined(MBEDTLS_ECP_RESTARTABLE)
  263. if (rs_ctx != NULL && rs_ctx->sig != NULL) {
  264. rs_ctx->sig->state = ecdsa_sig_mul;
  265. }
  266. mul:
  267. #endif
  268. MBEDTLS_MPI_CHK(mbedtls_ecp_mul_restartable(grp, &R, pk, &grp->G,
  269. f_rng_blind,
  270. p_rng_blind,
  271. ECDSA_RS_ECP));
  272. MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(pr, &R.X, &grp->N));
  273. } while (mbedtls_mpi_cmp_int(pr, 0) == 0);
  274. #if defined(MBEDTLS_ECP_RESTARTABLE)
  275. if (rs_ctx != NULL && rs_ctx->sig != NULL) {
  276. rs_ctx->sig->state = ecdsa_sig_modn;
  277. }
  278. modn:
  279. #endif
  280. /*
  281. * Accounting for everything up to the end of the loop
  282. * (step 6, but checking now avoids saving e and t)
  283. */
  284. ECDSA_BUDGET(MBEDTLS_ECP_OPS_INV + 4);
  285. /*
  286. * Step 5: derive MPI from hashed message
  287. */
  288. MBEDTLS_MPI_CHK(derive_mpi(grp, &e, buf, blen));
  289. /*
  290. * Generate a random value to blind inv_mod in next step,
  291. * avoiding a potential timing leak.
  292. */
  293. MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, &t, f_rng_blind,
  294. p_rng_blind));
  295. /*
  296. * Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n
  297. */
  298. MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(s, pr, d));
  299. MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&e, &e, s));
  300. MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&e, &e, &t));
  301. MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(pk, pk, &t));
  302. MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(pk, pk, &grp->N));
  303. MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(s, pk, &grp->N));
  304. MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(s, s, &e));
  305. MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(s, s, &grp->N));
  306. } while (mbedtls_mpi_cmp_int(s, 0) == 0);
  307. #if defined(MBEDTLS_ECP_RESTARTABLE)
  308. if (rs_ctx != NULL && rs_ctx->sig != NULL) {
  309. mbedtls_mpi_copy(r, pr);
  310. }
  311. #endif
  312. cleanup:
  313. mbedtls_ecp_point_free(&R);
  314. mbedtls_mpi_free(&k); mbedtls_mpi_free(&e); mbedtls_mpi_free(&t);
  315. ECDSA_RS_LEAVE(sig);
  316. return ret;
  317. }
  318. int mbedtls_ecdsa_can_do(mbedtls_ecp_group_id gid)
  319. {
  320. switch (gid) {
  321. #ifdef MBEDTLS_ECP_DP_CURVE25519_ENABLED
  322. case MBEDTLS_ECP_DP_CURVE25519: return 0;
  323. #endif
  324. #ifdef MBEDTLS_ECP_DP_CURVE448_ENABLED
  325. case MBEDTLS_ECP_DP_CURVE448: return 0;
  326. #endif
  327. default: return 1;
  328. }
  329. }
  330. /*
  331. * Compute ECDSA signature of a hashed message
  332. */
  333. int mbedtls_ecdsa_sign(mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
  334. const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
  335. int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
  336. {
  337. /* Use the same RNG for both blinding and ephemeral key generation */
  338. return mbedtls_ecdsa_sign_restartable(grp, r, s, d, buf, blen,
  339. f_rng, p_rng, f_rng, p_rng, NULL);
  340. }
  341. #endif /* !MBEDTLS_ECDSA_SIGN_ALT */
  342. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  343. /*
  344. * Deterministic signature wrapper
  345. *
  346. * note: The f_rng_blind parameter must not be NULL.
  347. *
  348. */
  349. int mbedtls_ecdsa_sign_det_restartable(mbedtls_ecp_group *grp,
  350. mbedtls_mpi *r, mbedtls_mpi *s,
  351. const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
  352. mbedtls_md_type_t md_alg,
  353. int (*f_rng_blind)(void *, unsigned char *, size_t),
  354. void *p_rng_blind,
  355. mbedtls_ecdsa_restart_ctx *rs_ctx)
  356. {
  357. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  358. mbedtls_hmac_drbg_context rng_ctx;
  359. mbedtls_hmac_drbg_context *p_rng = &rng_ctx;
  360. unsigned char data[2 * MBEDTLS_ECP_MAX_BYTES];
  361. size_t grp_len = (grp->nbits + 7) / 8;
  362. const mbedtls_md_info_t *md_info;
  363. mbedtls_mpi h;
  364. if ((md_info = mbedtls_md_info_from_type(md_alg)) == NULL) {
  365. return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
  366. }
  367. mbedtls_mpi_init(&h);
  368. mbedtls_hmac_drbg_init(&rng_ctx);
  369. ECDSA_RS_ENTER(det);
  370. #if defined(MBEDTLS_ECP_RESTARTABLE)
  371. if (rs_ctx != NULL && rs_ctx->det != NULL) {
  372. /* redirect to our context */
  373. p_rng = &rs_ctx->det->rng_ctx;
  374. /* jump to current step */
  375. if (rs_ctx->det->state == ecdsa_det_sign) {
  376. goto sign;
  377. }
  378. }
  379. #endif /* MBEDTLS_ECP_RESTARTABLE */
  380. /* Use private key and message hash (reduced) to initialize HMAC_DRBG */
  381. MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(d, data, grp_len));
  382. MBEDTLS_MPI_CHK(derive_mpi(grp, &h, buf, blen));
  383. MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&h, data + grp_len, grp_len));
  384. mbedtls_hmac_drbg_seed_buf(p_rng, md_info, data, 2 * grp_len);
  385. #if defined(MBEDTLS_ECP_RESTARTABLE)
  386. if (rs_ctx != NULL && rs_ctx->det != NULL) {
  387. rs_ctx->det->state = ecdsa_det_sign;
  388. }
  389. sign:
  390. #endif
  391. #if defined(MBEDTLS_ECDSA_SIGN_ALT)
  392. (void) f_rng_blind;
  393. (void) p_rng_blind;
  394. ret = mbedtls_ecdsa_sign(grp, r, s, d, buf, blen,
  395. mbedtls_hmac_drbg_random, p_rng);
  396. #else
  397. ret = mbedtls_ecdsa_sign_restartable(grp, r, s, d, buf, blen,
  398. mbedtls_hmac_drbg_random, p_rng,
  399. f_rng_blind, p_rng_blind, rs_ctx);
  400. #endif /* MBEDTLS_ECDSA_SIGN_ALT */
  401. cleanup:
  402. mbedtls_hmac_drbg_free(&rng_ctx);
  403. mbedtls_mpi_free(&h);
  404. ECDSA_RS_LEAVE(det);
  405. return ret;
  406. }
  407. /*
  408. * Deterministic signature wrapper
  409. */
  410. int mbedtls_ecdsa_sign_det_ext(mbedtls_ecp_group *grp, mbedtls_mpi *r,
  411. mbedtls_mpi *s, const mbedtls_mpi *d,
  412. const unsigned char *buf, size_t blen,
  413. mbedtls_md_type_t md_alg,
  414. int (*f_rng_blind)(void *, unsigned char *,
  415. size_t),
  416. void *p_rng_blind)
  417. {
  418. return mbedtls_ecdsa_sign_det_restartable(grp, r, s, d, buf, blen, md_alg,
  419. f_rng_blind, p_rng_blind, NULL);
  420. }
  421. #endif /* MBEDTLS_ECDSA_DETERMINISTIC */
  422. #if !defined(MBEDTLS_ECDSA_VERIFY_ALT)
  423. /*
  424. * Verify ECDSA signature of hashed message (SEC1 4.1.4)
  425. * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message)
  426. */
  427. int mbedtls_ecdsa_verify_restartable(mbedtls_ecp_group *grp,
  428. const unsigned char *buf, size_t blen,
  429. const mbedtls_ecp_point *Q,
  430. const mbedtls_mpi *r,
  431. const mbedtls_mpi *s,
  432. mbedtls_ecdsa_restart_ctx *rs_ctx)
  433. {
  434. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  435. mbedtls_mpi e, s_inv, u1, u2;
  436. mbedtls_ecp_point R;
  437. mbedtls_mpi *pu1 = &u1, *pu2 = &u2;
  438. mbedtls_ecp_point_init(&R);
  439. mbedtls_mpi_init(&e); mbedtls_mpi_init(&s_inv);
  440. mbedtls_mpi_init(&u1); mbedtls_mpi_init(&u2);
  441. /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
  442. if (!mbedtls_ecdsa_can_do(grp->id) || grp->N.p == NULL) {
  443. return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
  444. }
  445. ECDSA_RS_ENTER(ver);
  446. #if defined(MBEDTLS_ECP_RESTARTABLE)
  447. if (rs_ctx != NULL && rs_ctx->ver != NULL) {
  448. /* redirect to our context */
  449. pu1 = &rs_ctx->ver->u1;
  450. pu2 = &rs_ctx->ver->u2;
  451. /* jump to current step */
  452. if (rs_ctx->ver->state == ecdsa_ver_muladd) {
  453. goto muladd;
  454. }
  455. }
  456. #endif /* MBEDTLS_ECP_RESTARTABLE */
  457. /*
  458. * Step 1: make sure r and s are in range 1..n-1
  459. */
  460. if (mbedtls_mpi_cmp_int(r, 1) < 0 || mbedtls_mpi_cmp_mpi(r, &grp->N) >= 0 ||
  461. mbedtls_mpi_cmp_int(s, 1) < 0 || mbedtls_mpi_cmp_mpi(s, &grp->N) >= 0) {
  462. ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
  463. goto cleanup;
  464. }
  465. /*
  466. * Step 3: derive MPI from hashed message
  467. */
  468. MBEDTLS_MPI_CHK(derive_mpi(grp, &e, buf, blen));
  469. /*
  470. * Step 4: u1 = e / s mod n, u2 = r / s mod n
  471. */
  472. ECDSA_BUDGET(MBEDTLS_ECP_OPS_CHK + MBEDTLS_ECP_OPS_INV + 2);
  473. MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&s_inv, s, &grp->N));
  474. MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(pu1, &e, &s_inv));
  475. MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(pu1, pu1, &grp->N));
  476. MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(pu2, r, &s_inv));
  477. MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(pu2, pu2, &grp->N));
  478. #if defined(MBEDTLS_ECP_RESTARTABLE)
  479. if (rs_ctx != NULL && rs_ctx->ver != NULL) {
  480. rs_ctx->ver->state = ecdsa_ver_muladd;
  481. }
  482. muladd:
  483. #endif
  484. /*
  485. * Step 5: R = u1 G + u2 Q
  486. */
  487. MBEDTLS_MPI_CHK(mbedtls_ecp_muladd_restartable(grp,
  488. &R, pu1, &grp->G, pu2, Q, ECDSA_RS_ECP));
  489. if (mbedtls_ecp_is_zero(&R)) {
  490. ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
  491. goto cleanup;
  492. }
  493. /*
  494. * Step 6: convert xR to an integer (no-op)
  495. * Step 7: reduce xR mod n (gives v)
  496. */
  497. MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&R.X, &R.X, &grp->N));
  498. /*
  499. * Step 8: check if v (that is, R.X) is equal to r
  500. */
  501. if (mbedtls_mpi_cmp_mpi(&R.X, r) != 0) {
  502. ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
  503. goto cleanup;
  504. }
  505. cleanup:
  506. mbedtls_ecp_point_free(&R);
  507. mbedtls_mpi_free(&e); mbedtls_mpi_free(&s_inv);
  508. mbedtls_mpi_free(&u1); mbedtls_mpi_free(&u2);
  509. ECDSA_RS_LEAVE(ver);
  510. return ret;
  511. }
  512. /*
  513. * Verify ECDSA signature of hashed message
  514. */
  515. int mbedtls_ecdsa_verify(mbedtls_ecp_group *grp,
  516. const unsigned char *buf, size_t blen,
  517. const mbedtls_ecp_point *Q,
  518. const mbedtls_mpi *r,
  519. const mbedtls_mpi *s)
  520. {
  521. return mbedtls_ecdsa_verify_restartable(grp, buf, blen, Q, r, s, NULL);
  522. }
  523. #endif /* !MBEDTLS_ECDSA_VERIFY_ALT */
  524. /*
  525. * Convert a signature (given by context) to ASN.1
  526. */
  527. static int ecdsa_signature_to_asn1(const mbedtls_mpi *r, const mbedtls_mpi *s,
  528. unsigned char *sig, size_t sig_size,
  529. size_t *slen)
  530. {
  531. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  532. unsigned char buf[MBEDTLS_ECDSA_MAX_LEN] = { 0 };
  533. unsigned char *p = buf + sizeof(buf);
  534. size_t len = 0;
  535. MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_mpi(&p, buf, s));
  536. MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_mpi(&p, buf, r));
  537. MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&p, buf, len));
  538. MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&p, buf,
  539. MBEDTLS_ASN1_CONSTRUCTED |
  540. MBEDTLS_ASN1_SEQUENCE));
  541. if (len > sig_size) {
  542. return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
  543. }
  544. memcpy(sig, p, len);
  545. *slen = len;
  546. return 0;
  547. }
  548. /*
  549. * Compute and write signature
  550. */
  551. int mbedtls_ecdsa_write_signature_restartable(mbedtls_ecdsa_context *ctx,
  552. mbedtls_md_type_t md_alg,
  553. const unsigned char *hash, size_t hlen,
  554. unsigned char *sig, size_t sig_size, size_t *slen,
  555. int (*f_rng)(void *, unsigned char *, size_t),
  556. void *p_rng,
  557. mbedtls_ecdsa_restart_ctx *rs_ctx)
  558. {
  559. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  560. mbedtls_mpi r, s;
  561. if (f_rng == NULL) {
  562. return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
  563. }
  564. mbedtls_mpi_init(&r);
  565. mbedtls_mpi_init(&s);
  566. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  567. MBEDTLS_MPI_CHK(mbedtls_ecdsa_sign_det_restartable(&ctx->grp, &r, &s, &ctx->d,
  568. hash, hlen, md_alg, f_rng,
  569. p_rng, rs_ctx));
  570. #else
  571. (void) md_alg;
  572. #if defined(MBEDTLS_ECDSA_SIGN_ALT)
  573. (void) rs_ctx;
  574. MBEDTLS_MPI_CHK(mbedtls_ecdsa_sign(&ctx->grp, &r, &s, &ctx->d,
  575. hash, hlen, f_rng, p_rng));
  576. #else
  577. /* Use the same RNG for both blinding and ephemeral key generation */
  578. MBEDTLS_MPI_CHK(mbedtls_ecdsa_sign_restartable(&ctx->grp, &r, &s, &ctx->d,
  579. hash, hlen, f_rng, p_rng, f_rng,
  580. p_rng, rs_ctx));
  581. #endif /* MBEDTLS_ECDSA_SIGN_ALT */
  582. #endif /* MBEDTLS_ECDSA_DETERMINISTIC */
  583. MBEDTLS_MPI_CHK(ecdsa_signature_to_asn1(&r, &s, sig, sig_size, slen));
  584. cleanup:
  585. mbedtls_mpi_free(&r);
  586. mbedtls_mpi_free(&s);
  587. return ret;
  588. }
  589. /*
  590. * Compute and write signature
  591. */
  592. int mbedtls_ecdsa_write_signature(mbedtls_ecdsa_context *ctx,
  593. mbedtls_md_type_t md_alg,
  594. const unsigned char *hash, size_t hlen,
  595. unsigned char *sig, size_t sig_size, size_t *slen,
  596. int (*f_rng)(void *, unsigned char *, size_t),
  597. void *p_rng)
  598. {
  599. return mbedtls_ecdsa_write_signature_restartable(
  600. ctx, md_alg, hash, hlen, sig, sig_size, slen,
  601. f_rng, p_rng, NULL);
  602. }
  603. /*
  604. * Read and check signature
  605. */
  606. int mbedtls_ecdsa_read_signature(mbedtls_ecdsa_context *ctx,
  607. const unsigned char *hash, size_t hlen,
  608. const unsigned char *sig, size_t slen)
  609. {
  610. return mbedtls_ecdsa_read_signature_restartable(
  611. ctx, hash, hlen, sig, slen, NULL);
  612. }
  613. /*
  614. * Restartable read and check signature
  615. */
  616. int mbedtls_ecdsa_read_signature_restartable(mbedtls_ecdsa_context *ctx,
  617. const unsigned char *hash, size_t hlen,
  618. const unsigned char *sig, size_t slen,
  619. mbedtls_ecdsa_restart_ctx *rs_ctx)
  620. {
  621. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  622. unsigned char *p = (unsigned char *) sig;
  623. const unsigned char *end = sig + slen;
  624. size_t len;
  625. mbedtls_mpi r, s;
  626. mbedtls_mpi_init(&r);
  627. mbedtls_mpi_init(&s);
  628. if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
  629. MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
  630. ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
  631. goto cleanup;
  632. }
  633. if (p + len != end) {
  634. ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_ECP_BAD_INPUT_DATA,
  635. MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
  636. goto cleanup;
  637. }
  638. if ((ret = mbedtls_asn1_get_mpi(&p, end, &r)) != 0 ||
  639. (ret = mbedtls_asn1_get_mpi(&p, end, &s)) != 0) {
  640. ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
  641. goto cleanup;
  642. }
  643. #if defined(MBEDTLS_ECDSA_VERIFY_ALT)
  644. (void) rs_ctx;
  645. if ((ret = mbedtls_ecdsa_verify(&ctx->grp, hash, hlen,
  646. &ctx->Q, &r, &s)) != 0) {
  647. goto cleanup;
  648. }
  649. #else
  650. if ((ret = mbedtls_ecdsa_verify_restartable(&ctx->grp, hash, hlen,
  651. &ctx->Q, &r, &s, rs_ctx)) != 0) {
  652. goto cleanup;
  653. }
  654. #endif /* MBEDTLS_ECDSA_VERIFY_ALT */
  655. /* At this point we know that the buffer starts with a valid signature.
  656. * Return 0 if the buffer just contains the signature, and a specific
  657. * error code if the valid signature is followed by more data. */
  658. if (p != end) {
  659. ret = MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH;
  660. }
  661. cleanup:
  662. mbedtls_mpi_free(&r);
  663. mbedtls_mpi_free(&s);
  664. return ret;
  665. }
  666. #if !defined(MBEDTLS_ECDSA_GENKEY_ALT)
  667. /*
  668. * Generate key pair
  669. */
  670. int mbedtls_ecdsa_genkey(mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid,
  671. int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
  672. {
  673. int ret = 0;
  674. ret = mbedtls_ecp_group_load(&ctx->grp, gid);
  675. if (ret != 0) {
  676. return ret;
  677. }
  678. return mbedtls_ecp_gen_keypair(&ctx->grp, &ctx->d,
  679. &ctx->Q, f_rng, p_rng);
  680. }
  681. #endif /* !MBEDTLS_ECDSA_GENKEY_ALT */
  682. /*
  683. * Set context from an mbedtls_ecp_keypair
  684. */
  685. int mbedtls_ecdsa_from_keypair(mbedtls_ecdsa_context *ctx, const mbedtls_ecp_keypair *key)
  686. {
  687. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  688. if ((ret = mbedtls_ecp_group_copy(&ctx->grp, &key->grp)) != 0 ||
  689. (ret = mbedtls_mpi_copy(&ctx->d, &key->d)) != 0 ||
  690. (ret = mbedtls_ecp_copy(&ctx->Q, &key->Q)) != 0) {
  691. mbedtls_ecdsa_free(ctx);
  692. }
  693. return ret;
  694. }
  695. /*
  696. * Initialize context
  697. */
  698. void mbedtls_ecdsa_init(mbedtls_ecdsa_context *ctx)
  699. {
  700. mbedtls_ecp_keypair_init(ctx);
  701. }
  702. /*
  703. * Free context
  704. */
  705. void mbedtls_ecdsa_free(mbedtls_ecdsa_context *ctx)
  706. {
  707. if (ctx == NULL) {
  708. return;
  709. }
  710. mbedtls_ecp_keypair_free(ctx);
  711. }
  712. #if defined(MBEDTLS_ECP_RESTARTABLE)
  713. /*
  714. * Initialize a restart context
  715. */
  716. void mbedtls_ecdsa_restart_init(mbedtls_ecdsa_restart_ctx *ctx)
  717. {
  718. mbedtls_ecp_restart_init(&ctx->ecp);
  719. ctx->ver = NULL;
  720. ctx->sig = NULL;
  721. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  722. ctx->det = NULL;
  723. #endif
  724. }
  725. /*
  726. * Free the components of a restart context
  727. */
  728. void mbedtls_ecdsa_restart_free(mbedtls_ecdsa_restart_ctx *ctx)
  729. {
  730. if (ctx == NULL) {
  731. return;
  732. }
  733. mbedtls_ecp_restart_free(&ctx->ecp);
  734. ecdsa_restart_ver_free(ctx->ver);
  735. mbedtls_free(ctx->ver);
  736. ctx->ver = NULL;
  737. ecdsa_restart_sig_free(ctx->sig);
  738. mbedtls_free(ctx->sig);
  739. ctx->sig = NULL;
  740. #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
  741. ecdsa_restart_det_free(ctx->det);
  742. mbedtls_free(ctx->det);
  743. ctx->det = NULL;
  744. #endif
  745. }
  746. #endif /* MBEDTLS_ECP_RESTARTABLE */
  747. #endif /* MBEDTLS_ECDSA_C */