| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411 |
- /*
- * Armv8-A Cryptographic Extension support functions for Aarch64
- *
- * Copyright The Mbed TLS Contributors
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the "License"); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #if defined(__aarch64__) && !defined(__ARM_FEATURE_CRYPTO) && \
- defined(__clang__) && __clang_major__ >= 4
- /* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged.
- *
- * The intrinsic declaration are guarded by predefined ACLE macros in clang:
- * these are normally only enabled by the -march option on the command line.
- * By defining the macros ourselves we gain access to those declarations without
- * requiring -march on the command line.
- *
- * `arm_neon.h` could be included by any header file, so we put these defines
- * at the top of this file, before any includes.
- */
- #define __ARM_FEATURE_CRYPTO 1
- /* See: https://arm-software.github.io/acle/main/acle.html#cryptographic-extensions
- *
- * `__ARM_FEATURE_CRYPTO` is deprecated, but we need to continue to specify it
- * for older compilers.
- */
- #define __ARM_FEATURE_AES 1
- #define MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG
- #endif
- #include <string.h>
- #include "common.h"
- #if defined(MBEDTLS_AESCE_C)
- #include "aesce.h"
- #if defined(MBEDTLS_HAVE_ARM64)
- #if !defined(__ARM_FEATURE_AES) || defined(MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG)
- # if defined(__clang__)
- # if __clang_major__ < 4
- # error "A more recent Clang is required for MBEDTLS_AESCE_C"
- # endif
- # pragma clang attribute push (__attribute__((target("crypto"))), apply_to=function)
- # define MBEDTLS_POP_TARGET_PRAGMA
- # elif defined(__GNUC__)
- # if __GNUC__ < 6
- # error "A more recent GCC is required for MBEDTLS_AESCE_C"
- # endif
- # pragma GCC push_options
- # pragma GCC target ("arch=armv8-a+crypto")
- # define MBEDTLS_POP_TARGET_PRAGMA
- # else
- # error "Only GCC and Clang supported for MBEDTLS_AESCE_C"
- # endif
- #endif /* !__ARM_FEATURE_AES || MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG */
- #include <arm_neon.h>
- #if defined(__linux__)
- #include <asm/hwcap.h>
- #include <sys/auxv.h>
- #endif
- /*
- * AES instruction support detection routine
- */
- int mbedtls_aesce_has_support(void)
- {
- #if defined(__linux__)
- unsigned long auxval = getauxval(AT_HWCAP);
- return (auxval & (HWCAP_ASIMD | HWCAP_AES)) ==
- (HWCAP_ASIMD | HWCAP_AES);
- #else
- /* Assume AES instructions are supported. */
- return 1;
- #endif
- }
- static uint8x16_t aesce_encrypt_block(uint8x16_t block,
- unsigned char *keys,
- int rounds)
- {
- for (int i = 0; i < rounds - 1; i++) {
- /* AES AddRoundKey, SubBytes, ShiftRows (in this order).
- * AddRoundKey adds the round key for the previous round. */
- block = vaeseq_u8(block, vld1q_u8(keys + i * 16));
- /* AES mix columns */
- block = vaesmcq_u8(block);
- }
- /* AES AddRoundKey for the previous round.
- * SubBytes, ShiftRows for the final round. */
- block = vaeseq_u8(block, vld1q_u8(keys + (rounds -1) * 16));
- /* Final round: no MixColumns */
- /* Final AddRoundKey */
- block = veorq_u8(block, vld1q_u8(keys + rounds * 16));
- return block;
- }
- static uint8x16_t aesce_decrypt_block(uint8x16_t block,
- unsigned char *keys,
- int rounds)
- {
- for (int i = 0; i < rounds - 1; i++) {
- /* AES AddRoundKey, SubBytes, ShiftRows */
- block = vaesdq_u8(block, vld1q_u8(keys + i * 16));
- /* AES inverse MixColumns for the next round.
- *
- * This means that we switch the order of the inverse AddRoundKey and
- * inverse MixColumns operations. We have to do this as AddRoundKey is
- * done in an atomic instruction together with the inverses of SubBytes
- * and ShiftRows.
- *
- * It works because MixColumns is a linear operation over GF(2^8) and
- * AddRoundKey is an exclusive or, which is equivalent to addition over
- * GF(2^8). (The inverse of MixColumns needs to be applied to the
- * affected round keys separately which has been done when the
- * decryption round keys were calculated.) */
- block = vaesimcq_u8(block);
- }
- /* The inverses of AES AddRoundKey, SubBytes, ShiftRows finishing up the
- * last full round. */
- block = vaesdq_u8(block, vld1q_u8(keys + (rounds - 1) * 16));
- /* Inverse AddRoundKey for inverting the initial round key addition. */
- block = veorq_u8(block, vld1q_u8(keys + rounds * 16));
- return block;
- }
- /*
- * AES-ECB block en(de)cryption
- */
- int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
- int mode,
- const unsigned char input[16],
- unsigned char output[16])
- {
- uint8x16_t block = vld1q_u8(&input[0]);
- unsigned char *keys = (unsigned char *) (ctx->buf + ctx->rk_offset);
- if (mode == MBEDTLS_AES_ENCRYPT) {
- block = aesce_encrypt_block(block, keys, ctx->nr);
- } else {
- block = aesce_decrypt_block(block, keys, ctx->nr);
- }
- vst1q_u8(&output[0], block);
- return 0;
- }
- /*
- * Compute decryption round keys from encryption round keys
- */
- void mbedtls_aesce_inverse_key(unsigned char *invkey,
- const unsigned char *fwdkey,
- int nr)
- {
- int i, j;
- j = nr;
- vst1q_u8(invkey, vld1q_u8(fwdkey + j * 16));
- for (i = 1, j--; j > 0; i++, j--) {
- vst1q_u8(invkey + i * 16,
- vaesimcq_u8(vld1q_u8(fwdkey + j * 16)));
- }
- vst1q_u8(invkey + i * 16, vld1q_u8(fwdkey + j * 16));
- }
- static inline uint32_t aes_rot_word(uint32_t word)
- {
- return (word << (32 - 8)) | (word >> 8);
- }
- static inline uint32_t aes_sub_word(uint32_t in)
- {
- uint8x16_t v = vreinterpretq_u8_u32(vdupq_n_u32(in));
- uint8x16_t zero = vdupq_n_u8(0);
- /* vaeseq_u8 does both SubBytes and ShiftRows. Taking the first row yields
- * the correct result as ShiftRows doesn't change the first row. */
- v = vaeseq_u8(zero, v);
- return vgetq_lane_u32(vreinterpretq_u32_u8(v), 0);
- }
- /*
- * Key expansion function
- */
- static void aesce_setkey_enc(unsigned char *rk,
- const unsigned char *key,
- const size_t key_bit_length)
- {
- static uint8_t const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10,
- 0x20, 0x40, 0x80, 0x1b, 0x36 };
- /* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
- * - Section 5, Nr = Nk + 6
- * - Section 5.2, the length of round keys is Nb*(Nr+1)
- */
- const uint32_t key_len_in_words = key_bit_length / 32; /* Nk */
- const size_t round_key_len_in_words = 4; /* Nb */
- const size_t rounds_needed = key_len_in_words + 6; /* Nr */
- const size_t round_keys_len_in_words =
- round_key_len_in_words * (rounds_needed + 1); /* Nb*(Nr+1) */
- const uint32_t *rko_end = (uint32_t *) rk + round_keys_len_in_words;
- memcpy(rk, key, key_len_in_words * 4);
- for (uint32_t *rki = (uint32_t *) rk;
- rki + key_len_in_words < rko_end;
- rki += key_len_in_words) {
- size_t iteration = (rki - (uint32_t *) rk) / key_len_in_words;
- uint32_t *rko;
- rko = rki + key_len_in_words;
- rko[0] = aes_rot_word(aes_sub_word(rki[key_len_in_words - 1]));
- rko[0] ^= rcon[iteration] ^ rki[0];
- rko[1] = rko[0] ^ rki[1];
- rko[2] = rko[1] ^ rki[2];
- rko[3] = rko[2] ^ rki[3];
- if (rko + key_len_in_words > rko_end) {
- /* Do not write overflow words.*/
- continue;
- }
- switch (key_bit_length) {
- case 128:
- break;
- case 192:
- rko[4] = rko[3] ^ rki[4];
- rko[5] = rko[4] ^ rki[5];
- break;
- case 256:
- rko[4] = aes_sub_word(rko[3]) ^ rki[4];
- rko[5] = rko[4] ^ rki[5];
- rko[6] = rko[5] ^ rki[6];
- rko[7] = rko[6] ^ rki[7];
- break;
- }
- }
- }
- /*
- * Key expansion, wrapper
- */
- int mbedtls_aesce_setkey_enc(unsigned char *rk,
- const unsigned char *key,
- size_t bits)
- {
- switch (bits) {
- case 128:
- case 192:
- case 256:
- aesce_setkey_enc(rk, key, bits);
- break;
- default:
- return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
- }
- return 0;
- }
- #if defined(MBEDTLS_GCM_C)
- #if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 5
- /* Some intrinsics are not available for GCC 5.X. */
- #define vreinterpretq_p64_u8(a) ((poly64x2_t) a)
- #define vreinterpretq_u8_p128(a) ((uint8x16_t) a)
- static inline poly64_t vget_low_p64(poly64x2_t __a)
- {
- uint64x2_t tmp = (uint64x2_t) (__a);
- uint64x1_t lo = vcreate_u64(vgetq_lane_u64(tmp, 0));
- return (poly64_t) (lo);
- }
- #endif /* !__clang__ && __GNUC__ && __GNUC__ == 5*/
- /* vmull_p64/vmull_high_p64 wrappers.
- *
- * Older compilers miss some intrinsic functions for `poly*_t`. We use
- * uint8x16_t and uint8x16x3_t as input/output parameters.
- */
- static inline uint8x16_t pmull_low(uint8x16_t a, uint8x16_t b)
- {
- return vreinterpretq_u8_p128(
- vmull_p64(
- (poly64_t) vget_low_p64(vreinterpretq_p64_u8(a)),
- (poly64_t) vget_low_p64(vreinterpretq_p64_u8(b))));
- }
- static inline uint8x16_t pmull_high(uint8x16_t a, uint8x16_t b)
- {
- return vreinterpretq_u8_p128(
- vmull_high_p64(vreinterpretq_p64_u8(a),
- vreinterpretq_p64_u8(b)));
- }
- /* GHASH does 128b polynomial multiplication on block in GF(2^128) defined by
- * `x^128 + x^7 + x^2 + x + 1`.
- *
- * Arm64 only has 64b->128b polynomial multipliers, we need to do 4 64b
- * multiplies to generate a 128b.
- *
- * `poly_mult_128` executes polynomial multiplication and outputs 256b that
- * represented by 3 128b due to code size optimization.
- *
- * Output layout:
- * | | | |
- * |------------|-------------|-------------|
- * | ret.val[0] | h3:h2:00:00 | high 128b |
- * | ret.val[1] | :m2:m1:00 | middle 128b |
- * | ret.val[2] | : :l1:l0 | low 128b |
- */
- static inline uint8x16x3_t poly_mult_128(uint8x16_t a, uint8x16_t b)
- {
- uint8x16x3_t ret;
- uint8x16_t h, m, l; /* retval high/middle/low */
- uint8x16_t c, d, e;
- h = pmull_high(a, b); /* h3:h2:00:00 = a1*b1 */
- l = pmull_low(a, b); /* : :l1:l0 = a0*b0 */
- c = vextq_u8(b, b, 8); /* :c1:c0 = b0:b1 */
- d = pmull_high(a, c); /* :d2:d1:00 = a1*b0 */
- e = pmull_low(a, c); /* :e2:e1:00 = a0*b1 */
- m = veorq_u8(d, e); /* :m2:m1:00 = d + e */
- ret.val[0] = h;
- ret.val[1] = m;
- ret.val[2] = l;
- return ret;
- }
- /*
- * Modulo reduction.
- *
- * See: https://www.researchgate.net/publication/285612706_Implementing_GCM_on_ARMv8
- *
- * Section 4.3
- *
- * Modular reduction is slightly more complex. Write the GCM modulus as f(z) =
- * z^128 +r(z), where r(z) = z^7+z^2+z+ 1. The well known approach is to
- * consider that z^128 ≡r(z) (mod z^128 +r(z)), allowing us to write the 256-bit
- * operand to be reduced as a(z) = h(z)z^128 +l(z)≡h(z)r(z) + l(z). That is, we
- * simply multiply the higher part of the operand by r(z) and add it to l(z). If
- * the result is still larger than 128 bits, we reduce again.
- */
- static inline uint8x16_t poly_mult_reduce(uint8x16x3_t input)
- {
- uint8x16_t const ZERO = vdupq_n_u8(0);
- /* use 'asm' as an optimisation barrier to prevent loading MODULO from memory */
- uint64x2_t r = vreinterpretq_u64_u8(vdupq_n_u8(0x87));
- asm ("" : "+w" (r));
- uint8x16_t const MODULO = vreinterpretq_u8_u64(vshrq_n_u64(r, 64 - 8));
- uint8x16_t h, m, l; /* input high/middle/low 128b */
- uint8x16_t c, d, e, f, g, n, o;
- h = input.val[0]; /* h3:h2:00:00 */
- m = input.val[1]; /* :m2:m1:00 */
- l = input.val[2]; /* : :l1:l0 */
- c = pmull_high(h, MODULO); /* :c2:c1:00 = reduction of h3 */
- d = pmull_low(h, MODULO); /* : :d1:d0 = reduction of h2 */
- e = veorq_u8(c, m); /* :e2:e1:00 = m2:m1:00 + c2:c1:00 */
- f = pmull_high(e, MODULO); /* : :f1:f0 = reduction of e2 */
- g = vextq_u8(ZERO, e, 8); /* : :g1:00 = e1:00 */
- n = veorq_u8(d, l); /* : :n1:n0 = d1:d0 + l1:l0 */
- o = veorq_u8(n, f); /* o1:o0 = f1:f0 + n1:n0 */
- return veorq_u8(o, g); /* = o1:o0 + g1:00 */
- }
- /*
- * GCM multiplication: c = a times b in GF(2^128)
- */
- void mbedtls_aesce_gcm_mult(unsigned char c[16],
- const unsigned char a[16],
- const unsigned char b[16])
- {
- uint8x16_t va, vb, vc;
- va = vrbitq_u8(vld1q_u8(&a[0]));
- vb = vrbitq_u8(vld1q_u8(&b[0]));
- vc = vrbitq_u8(poly_mult_reduce(poly_mult_128(va, vb)));
- vst1q_u8(&c[0], vc);
- }
- #endif /* MBEDTLS_GCM_C */
- #if defined(MBEDTLS_POP_TARGET_PRAGMA)
- #if defined(__clang__)
- #pragma clang attribute pop
- #elif defined(__GNUC__)
- #pragma GCC pop_options
- #endif
- #undef MBEDTLS_POP_TARGET_PRAGMA
- #endif
- #endif /* MBEDTLS_HAVE_ARM64 */
- #endif /* MBEDTLS_AESCE_C */
|