| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378 |
- /* BEGIN_HEADER */
- #include "../library/alignment.h"
- #include <stdint.h>
- #if defined(__clang__)
- #pragma clang diagnostic ignored "-Wunreachable-code"
- #endif
- /*
- * Convert a string of the form "abcd" (case-insensitive) to a uint64_t.
- */
- int parse_hex_string(char *hex_string, uint64_t *result)
- {
- uint8_t raw[8];
- size_t olen;
- if (mbedtls_test_unhexify(raw, sizeof(raw), hex_string, &olen) != 0) {
- return 0;
- }
- *result = 0;
- for (size_t i = 0; i < olen; i++) {
- if (MBEDTLS_IS_BIG_ENDIAN) {
- *result |= ((uint64_t) raw[i]) << (i * 8);
- } else {
- *result |= ((uint64_t) raw[i]) << ((olen - i - 1) * 8);
- }
- }
- return 1;
- }
- /* END_HEADER */
- /* BEGIN_CASE */
- void mbedtls_unaligned_access(int size, int offset)
- {
- /* Define 64-bit aligned raw byte array */
- uint64_t raw[2];
- /* Populate with known data */
- uint8_t *x = (uint8_t *) raw;
- for (size_t i = 0; i < sizeof(raw); i++) {
- x[i] = (uint8_t) i;
- }
- TEST_ASSERT(size == 16 || size == 32 || size == 64);
- uint64_t r = 0;
- switch (size) {
- case 16:
- r = mbedtls_get_unaligned_uint16(x + offset);
- break;
- case 32:
- r = mbedtls_get_unaligned_uint32(x + offset);
- break;
- case 64:
- r = mbedtls_get_unaligned_uint64(x + offset);
- break;
- }
- /* Generate expected result */
- uint64_t expected = 0;
- for (uint8_t i = 0; i < 8; i++) {
- uint8_t shift;
- if (MBEDTLS_IS_BIG_ENDIAN) {
- /*
- * Similar to little-endian case described below, but the shift needs
- * to be inverted
- */
- shift = 7 - (i * 8);
- } else {
- /* example for offset == 1:
- * expected = (( 1 + 0 ) << (0 * 8)) | (( 1 + 1 ) << (1 * 8)) | (( 1 + 2 ) << (2 * 8)))
- * = (1 << 0) | (2 << 8) | (3 << 16) ...
- * = 0x0807060504030201
- * x = { 0, 1, 2, 3, ... }
- * ie expected is the value that would be read from x on a LE system, when
- * byte swapping is not performed
- */
- shift = i * 8;
- }
- uint64_t b = offset + i;
- expected |= b << shift;
- }
- /* Mask out excess bits from expected result */
- switch (size) {
- case 16:
- expected &= 0xffff;
- break;
- case 32:
- expected &= 0xffffffff;
- break;
- }
- TEST_EQUAL(r, expected);
- /* Write sentinel to the part of the array we will testing writing to */
- for (size_t i = 0; i < (size_t) (size / 8); i++) {
- x[i + offset] = 0xff;
- }
- /*
- * Write back to the array with mbedtls_put_unaligned_uint16 and validate
- * that the array is unchanged as a result.
- */
- switch (size) {
- case 16:
- mbedtls_put_unaligned_uint16(x + offset, r);
- break;
- case 32:
- mbedtls_put_unaligned_uint32(x + offset, r);
- break;
- case 64:
- mbedtls_put_unaligned_uint64(x + offset, r);
- break;
- }
- for (size_t i = 0; i < sizeof(x); i++) {
- TEST_EQUAL(x[i], (uint8_t) i);
- }
- }
- /* END_CASE */
- /* BEGIN_CASE */
- void mbedtls_byteswap(char *input_str, int size, char *expected_str)
- {
- uint64_t input, expected;
- TEST_ASSERT(parse_hex_string(input_str, &input));
- TEST_ASSERT(parse_hex_string(expected_str, &expected));
- /* Check against expected result */
- uint64_t r = 0;
- switch (size) {
- case 16:
- r = MBEDTLS_BSWAP16(input);
- break;
- case 32:
- r = MBEDTLS_BSWAP32(input);
- break;
- case 64:
- r = MBEDTLS_BSWAP64(input);
- break;
- default:
- TEST_ASSERT(!"size must be 16, 32 or 64");
- }
- TEST_EQUAL(r, expected);
- /*
- * Check byte by byte by extracting bytes from opposite ends of
- * input and r.
- */
- for (size_t i = 0; i < (size_t) (size / 8); i++) {
- size_t s1 = i * 8;
- size_t s2 = ((size / 8 - 1) - i) * 8;
- uint64_t a = (input & ((uint64_t) 0xff << s1)) >> s1;
- uint64_t b = (r & ((uint64_t) 0xff << s2)) >> s2;
- TEST_EQUAL(a, b);
- }
- /* Check BSWAP(BSWAP(x)) == x */
- switch (size) {
- case 16:
- r = MBEDTLS_BSWAP16(r);
- TEST_EQUAL(r, input & 0xffff);
- break;
- case 32:
- r = MBEDTLS_BSWAP32(r);
- TEST_EQUAL(r, input & 0xffffffff);
- break;
- case 64:
- r = MBEDTLS_BSWAP64(r);
- TEST_EQUAL(r, input);
- break;
- }
- }
- /* END_CASE */
- /* BEGIN_CASE */
- void get_byte()
- {
- uint8_t data[16];
- for (size_t i = 0; i < sizeof(data); i++) {
- data[i] = (uint8_t) i;
- }
- uint64_t u64 = 0x0706050403020100;
- for (size_t b = 0; b < 8; b++) {
- uint8_t expected = b;
- uint8_t actual = b + 1;
- switch (b) {
- case 0:
- actual = MBEDTLS_BYTE_0(u64);
- break;
- case 1:
- actual = MBEDTLS_BYTE_1(u64);
- break;
- case 2:
- actual = MBEDTLS_BYTE_2(u64);
- break;
- case 3:
- actual = MBEDTLS_BYTE_3(u64);
- break;
- case 4:
- actual = MBEDTLS_BYTE_4(u64);
- break;
- case 5:
- actual = MBEDTLS_BYTE_5(u64);
- break;
- case 6:
- actual = MBEDTLS_BYTE_6(u64);
- break;
- case 7:
- actual = MBEDTLS_BYTE_7(u64);
- break;
- }
- TEST_EQUAL(actual, expected);
- }
- uint32_t u32 = 0x03020100;
- for (size_t b = 0; b < 4; b++) {
- uint8_t expected = b;
- uint8_t actual = b + 1;
- switch (b) {
- case 0:
- actual = MBEDTLS_BYTE_0(u32);
- break;
- case 1:
- actual = MBEDTLS_BYTE_1(u32);
- break;
- case 2:
- actual = MBEDTLS_BYTE_2(u32);
- break;
- case 3:
- actual = MBEDTLS_BYTE_3(u32);
- break;
- }
- TEST_EQUAL(actual, expected);
- }
- uint16_t u16 = 0x0100;
- for (size_t b = 0; b < 2; b++) {
- uint8_t expected = b;
- uint8_t actual = b + 1;
- switch (b) {
- case 0:
- actual = MBEDTLS_BYTE_0(u16);
- break;
- case 1:
- actual = MBEDTLS_BYTE_1(u16);
- break;
- }
- TEST_EQUAL(actual, expected);
- }
- uint8_t u8 = 0x01;
- uint8_t actual = MBEDTLS_BYTE_0(u8);
- TEST_EQUAL(actual, u8);
- }
- /* END_CASE */
- /* BEGIN_CASE */
- void unaligned_access_endian_aware(int size, int offset, int big_endian)
- {
- TEST_ASSERT(size == 16 || size == 24 || size == 32 || size == 64);
- TEST_ASSERT(offset >= 0 && offset < 8);
- /* Define 64-bit aligned raw byte array */
- uint64_t raw[2];
- /* Populate with known data: x == { 0, 1, 2, ... } */
- uint8_t *x = (uint8_t *) raw;
- for (size_t i = 0; i < sizeof(raw); i++) {
- x[i] = (uint8_t) i;
- }
- uint64_t read = 0;
- if (big_endian) {
- switch (size) {
- case 16:
- read = MBEDTLS_GET_UINT16_BE(x, offset);
- break;
- case 24:
- read = MBEDTLS_GET_UINT24_BE(x, offset);
- break;
- case 32:
- read = MBEDTLS_GET_UINT32_BE(x, offset);
- break;
- case 64:
- read = MBEDTLS_GET_UINT64_BE(x, offset);
- break;
- }
- } else {
- switch (size) {
- case 16:
- read = MBEDTLS_GET_UINT16_LE(x, offset);
- break;
- case 24:
- read = MBEDTLS_GET_UINT24_LE(x, offset);
- break;
- case 32:
- read = MBEDTLS_GET_UINT32_LE(x, offset);
- break;
- case 64:
- read = MBEDTLS_GET_UINT64_LE(x, offset);
- break;
- }
- }
- /* Build up expected value byte by byte, in either big or little endian format */
- uint64_t expected = 0;
- for (size_t i = 0; i < (size_t) (size / 8); i++) {
- uint64_t b = x[i + offset];
- uint8_t shift = (big_endian) ? (8 * ((size / 8 - 1) - i)) : (8 * i);
- expected |= b << shift;
- }
- /* Verify read */
- TEST_EQUAL(read, expected);
- /* Test writing back to memory. First write sentiel */
- for (size_t i = 0; i < (size_t) (size / 8); i++) {
- x[i + offset] = 0xff;
- }
- /* Overwrite sentinel with endian-aware write macro */
- if (big_endian) {
- switch (size) {
- case 16:
- MBEDTLS_PUT_UINT16_BE(read, x, offset);
- break;
- case 24:
- MBEDTLS_PUT_UINT24_BE(read, x, offset);
- break;
- case 32:
- MBEDTLS_PUT_UINT32_BE(read, x, offset);
- break;
- case 64:
- MBEDTLS_PUT_UINT64_BE(read, x, offset);
- break;
- }
- } else {
- switch (size) {
- case 16:
- MBEDTLS_PUT_UINT16_LE(read, x, offset);
- break;
- case 24:
- MBEDTLS_PUT_UINT24_LE(read, x, offset);
- break;
- case 32:
- MBEDTLS_PUT_UINT32_LE(read, x, offset);
- break;
- case 64:
- MBEDTLS_PUT_UINT64_LE(read, x, offset);
- break;
- }
- }
- /* Verify write - check memory is correct */
- for (size_t i = 0; i < sizeof(raw); i++) {
- TEST_EQUAL(x[i], (uint8_t) i);
- }
- }
- /* END_CASE */
- /* BEGIN_CASE */
- void mbedtls_is_big_endian()
- {
- uint16_t check = 0x1234;
- uint8_t *p = (uint8_t *) ✓
- if (MBEDTLS_IS_BIG_ENDIAN) {
- /* Big-endian: data stored MSB first, i.e. p == { 0x12, 0x34 } */
- TEST_EQUAL(p[0], 0x12);
- TEST_EQUAL(p[1], 0x34);
- } else {
- /* Little-endian: data stored LSB first, i.e. p == { 0x34, 0x12 } */
- TEST_EQUAL(p[0], 0x34);
- TEST_EQUAL(p[1], 0x12);
- }
- }
- /* END_CASE */
|