test_suite_alignment.function 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. /* BEGIN_HEADER */
  2. #include "../library/alignment.h"
  3. #include <stdint.h>
  4. #if defined(__clang__)
  5. #pragma clang diagnostic ignored "-Wunreachable-code"
  6. #endif
  7. /*
  8. * Convert a string of the form "abcd" (case-insensitive) to a uint64_t.
  9. */
  10. int parse_hex_string(char *hex_string, uint64_t *result)
  11. {
  12. uint8_t raw[8];
  13. size_t olen;
  14. if (mbedtls_test_unhexify(raw, sizeof(raw), hex_string, &olen) != 0) {
  15. return 0;
  16. }
  17. *result = 0;
  18. for (size_t i = 0; i < olen; i++) {
  19. if (MBEDTLS_IS_BIG_ENDIAN) {
  20. *result |= ((uint64_t) raw[i]) << (i * 8);
  21. } else {
  22. *result |= ((uint64_t) raw[i]) << ((olen - i - 1) * 8);
  23. }
  24. }
  25. return 1;
  26. }
  27. /* END_HEADER */
  28. /* BEGIN_CASE */
  29. void mbedtls_unaligned_access(int size, int offset)
  30. {
  31. /* Define 64-bit aligned raw byte array */
  32. uint64_t raw[2];
  33. /* Populate with known data */
  34. uint8_t *x = (uint8_t *) raw;
  35. for (size_t i = 0; i < sizeof(raw); i++) {
  36. x[i] = (uint8_t) i;
  37. }
  38. TEST_ASSERT(size == 16 || size == 32 || size == 64);
  39. uint64_t r = 0;
  40. switch (size) {
  41. case 16:
  42. r = mbedtls_get_unaligned_uint16(x + offset);
  43. break;
  44. case 32:
  45. r = mbedtls_get_unaligned_uint32(x + offset);
  46. break;
  47. case 64:
  48. r = mbedtls_get_unaligned_uint64(x + offset);
  49. break;
  50. }
  51. /* Generate expected result */
  52. uint64_t expected = 0;
  53. for (uint8_t i = 0; i < 8; i++) {
  54. uint8_t shift;
  55. if (MBEDTLS_IS_BIG_ENDIAN) {
  56. /*
  57. * Similar to little-endian case described below, but the shift needs
  58. * to be inverted
  59. */
  60. shift = 7 - (i * 8);
  61. } else {
  62. /* example for offset == 1:
  63. * expected = (( 1 + 0 ) << (0 * 8)) | (( 1 + 1 ) << (1 * 8)) | (( 1 + 2 ) << (2 * 8)))
  64. * = (1 << 0) | (2 << 8) | (3 << 16) ...
  65. * = 0x0807060504030201
  66. * x = { 0, 1, 2, 3, ... }
  67. * ie expected is the value that would be read from x on a LE system, when
  68. * byte swapping is not performed
  69. */
  70. shift = i * 8;
  71. }
  72. uint64_t b = offset + i;
  73. expected |= b << shift;
  74. }
  75. /* Mask out excess bits from expected result */
  76. switch (size) {
  77. case 16:
  78. expected &= 0xffff;
  79. break;
  80. case 32:
  81. expected &= 0xffffffff;
  82. break;
  83. }
  84. TEST_EQUAL(r, expected);
  85. /* Write sentinel to the part of the array we will testing writing to */
  86. for (size_t i = 0; i < (size_t) (size / 8); i++) {
  87. x[i + offset] = 0xff;
  88. }
  89. /*
  90. * Write back to the array with mbedtls_put_unaligned_uint16 and validate
  91. * that the array is unchanged as a result.
  92. */
  93. switch (size) {
  94. case 16:
  95. mbedtls_put_unaligned_uint16(x + offset, r);
  96. break;
  97. case 32:
  98. mbedtls_put_unaligned_uint32(x + offset, r);
  99. break;
  100. case 64:
  101. mbedtls_put_unaligned_uint64(x + offset, r);
  102. break;
  103. }
  104. for (size_t i = 0; i < sizeof(x); i++) {
  105. TEST_EQUAL(x[i], (uint8_t) i);
  106. }
  107. }
  108. /* END_CASE */
  109. /* BEGIN_CASE */
  110. void mbedtls_byteswap(char *input_str, int size, char *expected_str)
  111. {
  112. uint64_t input, expected;
  113. TEST_ASSERT(parse_hex_string(input_str, &input));
  114. TEST_ASSERT(parse_hex_string(expected_str, &expected));
  115. /* Check against expected result */
  116. uint64_t r = 0;
  117. switch (size) {
  118. case 16:
  119. r = MBEDTLS_BSWAP16(input);
  120. break;
  121. case 32:
  122. r = MBEDTLS_BSWAP32(input);
  123. break;
  124. case 64:
  125. r = MBEDTLS_BSWAP64(input);
  126. break;
  127. default:
  128. TEST_ASSERT(!"size must be 16, 32 or 64");
  129. }
  130. TEST_EQUAL(r, expected);
  131. /*
  132. * Check byte by byte by extracting bytes from opposite ends of
  133. * input and r.
  134. */
  135. for (size_t i = 0; i < (size_t) (size / 8); i++) {
  136. size_t s1 = i * 8;
  137. size_t s2 = ((size / 8 - 1) - i) * 8;
  138. uint64_t a = (input & ((uint64_t) 0xff << s1)) >> s1;
  139. uint64_t b = (r & ((uint64_t) 0xff << s2)) >> s2;
  140. TEST_EQUAL(a, b);
  141. }
  142. /* Check BSWAP(BSWAP(x)) == x */
  143. switch (size) {
  144. case 16:
  145. r = MBEDTLS_BSWAP16(r);
  146. TEST_EQUAL(r, input & 0xffff);
  147. break;
  148. case 32:
  149. r = MBEDTLS_BSWAP32(r);
  150. TEST_EQUAL(r, input & 0xffffffff);
  151. break;
  152. case 64:
  153. r = MBEDTLS_BSWAP64(r);
  154. TEST_EQUAL(r, input);
  155. break;
  156. }
  157. }
  158. /* END_CASE */
  159. /* BEGIN_CASE */
  160. void get_byte()
  161. {
  162. uint8_t data[16];
  163. for (size_t i = 0; i < sizeof(data); i++) {
  164. data[i] = (uint8_t) i;
  165. }
  166. uint64_t u64 = 0x0706050403020100;
  167. for (size_t b = 0; b < 8; b++) {
  168. uint8_t expected = b;
  169. uint8_t actual = b + 1;
  170. switch (b) {
  171. case 0:
  172. actual = MBEDTLS_BYTE_0(u64);
  173. break;
  174. case 1:
  175. actual = MBEDTLS_BYTE_1(u64);
  176. break;
  177. case 2:
  178. actual = MBEDTLS_BYTE_2(u64);
  179. break;
  180. case 3:
  181. actual = MBEDTLS_BYTE_3(u64);
  182. break;
  183. case 4:
  184. actual = MBEDTLS_BYTE_4(u64);
  185. break;
  186. case 5:
  187. actual = MBEDTLS_BYTE_5(u64);
  188. break;
  189. case 6:
  190. actual = MBEDTLS_BYTE_6(u64);
  191. break;
  192. case 7:
  193. actual = MBEDTLS_BYTE_7(u64);
  194. break;
  195. }
  196. TEST_EQUAL(actual, expected);
  197. }
  198. uint32_t u32 = 0x03020100;
  199. for (size_t b = 0; b < 4; b++) {
  200. uint8_t expected = b;
  201. uint8_t actual = b + 1;
  202. switch (b) {
  203. case 0:
  204. actual = MBEDTLS_BYTE_0(u32);
  205. break;
  206. case 1:
  207. actual = MBEDTLS_BYTE_1(u32);
  208. break;
  209. case 2:
  210. actual = MBEDTLS_BYTE_2(u32);
  211. break;
  212. case 3:
  213. actual = MBEDTLS_BYTE_3(u32);
  214. break;
  215. }
  216. TEST_EQUAL(actual, expected);
  217. }
  218. uint16_t u16 = 0x0100;
  219. for (size_t b = 0; b < 2; b++) {
  220. uint8_t expected = b;
  221. uint8_t actual = b + 1;
  222. switch (b) {
  223. case 0:
  224. actual = MBEDTLS_BYTE_0(u16);
  225. break;
  226. case 1:
  227. actual = MBEDTLS_BYTE_1(u16);
  228. break;
  229. }
  230. TEST_EQUAL(actual, expected);
  231. }
  232. uint8_t u8 = 0x01;
  233. uint8_t actual = MBEDTLS_BYTE_0(u8);
  234. TEST_EQUAL(actual, u8);
  235. }
  236. /* END_CASE */
  237. /* BEGIN_CASE */
  238. void unaligned_access_endian_aware(int size, int offset, int big_endian)
  239. {
  240. TEST_ASSERT(size == 16 || size == 24 || size == 32 || size == 64);
  241. TEST_ASSERT(offset >= 0 && offset < 8);
  242. /* Define 64-bit aligned raw byte array */
  243. uint64_t raw[2];
  244. /* Populate with known data: x == { 0, 1, 2, ... } */
  245. uint8_t *x = (uint8_t *) raw;
  246. for (size_t i = 0; i < sizeof(raw); i++) {
  247. x[i] = (uint8_t) i;
  248. }
  249. uint64_t read = 0;
  250. if (big_endian) {
  251. switch (size) {
  252. case 16:
  253. read = MBEDTLS_GET_UINT16_BE(x, offset);
  254. break;
  255. case 24:
  256. read = MBEDTLS_GET_UINT24_BE(x, offset);
  257. break;
  258. case 32:
  259. read = MBEDTLS_GET_UINT32_BE(x, offset);
  260. break;
  261. case 64:
  262. read = MBEDTLS_GET_UINT64_BE(x, offset);
  263. break;
  264. }
  265. } else {
  266. switch (size) {
  267. case 16:
  268. read = MBEDTLS_GET_UINT16_LE(x, offset);
  269. break;
  270. case 24:
  271. read = MBEDTLS_GET_UINT24_LE(x, offset);
  272. break;
  273. case 32:
  274. read = MBEDTLS_GET_UINT32_LE(x, offset);
  275. break;
  276. case 64:
  277. read = MBEDTLS_GET_UINT64_LE(x, offset);
  278. break;
  279. }
  280. }
  281. /* Build up expected value byte by byte, in either big or little endian format */
  282. uint64_t expected = 0;
  283. for (size_t i = 0; i < (size_t) (size / 8); i++) {
  284. uint64_t b = x[i + offset];
  285. uint8_t shift = (big_endian) ? (8 * ((size / 8 - 1) - i)) : (8 * i);
  286. expected |= b << shift;
  287. }
  288. /* Verify read */
  289. TEST_EQUAL(read, expected);
  290. /* Test writing back to memory. First write sentiel */
  291. for (size_t i = 0; i < (size_t) (size / 8); i++) {
  292. x[i + offset] = 0xff;
  293. }
  294. /* Overwrite sentinel with endian-aware write macro */
  295. if (big_endian) {
  296. switch (size) {
  297. case 16:
  298. MBEDTLS_PUT_UINT16_BE(read, x, offset);
  299. break;
  300. case 24:
  301. MBEDTLS_PUT_UINT24_BE(read, x, offset);
  302. break;
  303. case 32:
  304. MBEDTLS_PUT_UINT32_BE(read, x, offset);
  305. break;
  306. case 64:
  307. MBEDTLS_PUT_UINT64_BE(read, x, offset);
  308. break;
  309. }
  310. } else {
  311. switch (size) {
  312. case 16:
  313. MBEDTLS_PUT_UINT16_LE(read, x, offset);
  314. break;
  315. case 24:
  316. MBEDTLS_PUT_UINT24_LE(read, x, offset);
  317. break;
  318. case 32:
  319. MBEDTLS_PUT_UINT32_LE(read, x, offset);
  320. break;
  321. case 64:
  322. MBEDTLS_PUT_UINT64_LE(read, x, offset);
  323. break;
  324. }
  325. }
  326. /* Verify write - check memory is correct */
  327. for (size_t i = 0; i < sizeof(raw); i++) {
  328. TEST_EQUAL(x[i], (uint8_t) i);
  329. }
  330. }
  331. /* END_CASE */
  332. /* BEGIN_CASE */
  333. void mbedtls_is_big_endian()
  334. {
  335. uint16_t check = 0x1234;
  336. uint8_t *p = (uint8_t *) &check;
  337. if (MBEDTLS_IS_BIG_ENDIAN) {
  338. /* Big-endian: data stored MSB first, i.e. p == { 0x12, 0x34 } */
  339. TEST_EQUAL(p[0], 0x12);
  340. TEST_EQUAL(p[1], 0x34);
  341. } else {
  342. /* Little-endian: data stored LSB first, i.e. p == { 0x34, 0x12 } */
  343. TEST_EQUAL(p[0], 0x34);
  344. TEST_EQUAL(p[1], 0x12);
  345. }
  346. }
  347. /* END_CASE */