test_suite_gcm.function 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466
  1. /* BEGIN_HEADER */
  2. #include "mbedtls/gcm.h"
  3. /* Use the multipart interface to process the encrypted data in two parts
  4. * and check that the output matches the expected output.
  5. * The context must have been set up with the key. */
  6. static int check_multipart(mbedtls_gcm_context *ctx,
  7. int mode,
  8. const data_t *iv,
  9. const data_t *add,
  10. const data_t *input,
  11. const data_t *expected_output,
  12. const data_t *tag,
  13. size_t n1,
  14. size_t n1_add)
  15. {
  16. int ok = 0;
  17. uint8_t *output = NULL;
  18. size_t n2 = input->len - n1;
  19. size_t n2_add = add->len - n1_add;
  20. size_t olen;
  21. /* Sanity checks on the test data */
  22. TEST_ASSERT(n1 <= input->len);
  23. TEST_ASSERT(n1_add <= add->len);
  24. TEST_EQUAL(input->len, expected_output->len);
  25. TEST_EQUAL(0, mbedtls_gcm_starts(ctx, mode,
  26. iv->x, iv->len));
  27. TEST_EQUAL(0, mbedtls_gcm_update_ad(ctx, add->x, n1_add));
  28. TEST_EQUAL(0, mbedtls_gcm_update_ad(ctx, add->x + n1_add, n2_add));
  29. /* Allocate a tight buffer for each update call. This way, if the function
  30. * tries to write beyond the advertised required buffer size, this will
  31. * count as an overflow for memory sanitizers and static checkers. */
  32. ASSERT_ALLOC(output, n1);
  33. olen = 0xdeadbeef;
  34. TEST_EQUAL(0, mbedtls_gcm_update(ctx, input->x, n1, output, n1, &olen));
  35. TEST_EQUAL(n1, olen);
  36. ASSERT_COMPARE(output, olen, expected_output->x, n1);
  37. mbedtls_free(output);
  38. output = NULL;
  39. ASSERT_ALLOC(output, n2);
  40. olen = 0xdeadbeef;
  41. TEST_EQUAL(0, mbedtls_gcm_update(ctx, input->x + n1, n2, output, n2, &olen));
  42. TEST_EQUAL(n2, olen);
  43. ASSERT_COMPARE(output, olen, expected_output->x + n1, n2);
  44. mbedtls_free(output);
  45. output = NULL;
  46. ASSERT_ALLOC(output, tag->len);
  47. TEST_EQUAL(0, mbedtls_gcm_finish(ctx, NULL, 0, &olen, output, tag->len));
  48. TEST_EQUAL(0, olen);
  49. ASSERT_COMPARE(output, tag->len, tag->x, tag->len);
  50. mbedtls_free(output);
  51. output = NULL;
  52. ok = 1;
  53. exit:
  54. mbedtls_free(output);
  55. return ok;
  56. }
  57. static void check_cipher_with_empty_ad(mbedtls_gcm_context *ctx,
  58. int mode,
  59. const data_t *iv,
  60. const data_t *input,
  61. const data_t *expected_output,
  62. const data_t *tag,
  63. size_t ad_update_count)
  64. {
  65. size_t n;
  66. uint8_t *output = NULL;
  67. size_t olen;
  68. /* Sanity checks on the test data */
  69. TEST_EQUAL(input->len, expected_output->len);
  70. TEST_EQUAL(0, mbedtls_gcm_starts(ctx, mode,
  71. iv->x, iv->len));
  72. for (n = 0; n < ad_update_count; n++) {
  73. TEST_EQUAL(0, mbedtls_gcm_update_ad(ctx, NULL, 0));
  74. }
  75. /* Allocate a tight buffer for each update call. This way, if the function
  76. * tries to write beyond the advertised required buffer size, this will
  77. * count as an overflow for memory sanitizers and static checkers. */
  78. ASSERT_ALLOC(output, input->len);
  79. olen = 0xdeadbeef;
  80. TEST_EQUAL(0, mbedtls_gcm_update(ctx, input->x, input->len, output, input->len, &olen));
  81. TEST_EQUAL(input->len, olen);
  82. ASSERT_COMPARE(output, olen, expected_output->x, input->len);
  83. mbedtls_free(output);
  84. output = NULL;
  85. ASSERT_ALLOC(output, tag->len);
  86. TEST_EQUAL(0, mbedtls_gcm_finish(ctx, NULL, 0, &olen, output, tag->len));
  87. TEST_EQUAL(0, olen);
  88. ASSERT_COMPARE(output, tag->len, tag->x, tag->len);
  89. exit:
  90. mbedtls_free(output);
  91. }
  92. static void check_empty_cipher_with_ad(mbedtls_gcm_context *ctx,
  93. int mode,
  94. const data_t *iv,
  95. const data_t *add,
  96. const data_t *tag,
  97. size_t cipher_update_count)
  98. {
  99. size_t olen;
  100. size_t n;
  101. uint8_t *output_tag = NULL;
  102. TEST_EQUAL(0, mbedtls_gcm_starts(ctx, mode, iv->x, iv->len));
  103. TEST_EQUAL(0, mbedtls_gcm_update_ad(ctx, add->x, add->len));
  104. for (n = 0; n < cipher_update_count; n++) {
  105. olen = 0xdeadbeef;
  106. TEST_EQUAL(0, mbedtls_gcm_update(ctx, NULL, 0, NULL, 0, &olen));
  107. TEST_EQUAL(0, olen);
  108. }
  109. ASSERT_ALLOC(output_tag, tag->len);
  110. TEST_EQUAL(0, mbedtls_gcm_finish(ctx, NULL, 0, &olen,
  111. output_tag, tag->len));
  112. TEST_EQUAL(0, olen);
  113. ASSERT_COMPARE(output_tag, tag->len, tag->x, tag->len);
  114. exit:
  115. mbedtls_free(output_tag);
  116. }
  117. static void check_no_cipher_no_ad(mbedtls_gcm_context *ctx,
  118. int mode,
  119. const data_t *iv,
  120. const data_t *tag)
  121. {
  122. uint8_t *output = NULL;
  123. size_t olen = 0;
  124. TEST_EQUAL(0, mbedtls_gcm_starts(ctx, mode,
  125. iv->x, iv->len));
  126. ASSERT_ALLOC(output, tag->len);
  127. TEST_EQUAL(0, mbedtls_gcm_finish(ctx, NULL, 0, &olen, output, tag->len));
  128. TEST_EQUAL(0, olen);
  129. ASSERT_COMPARE(output, tag->len, tag->x, tag->len);
  130. exit:
  131. mbedtls_free(output);
  132. }
  133. /* END_HEADER */
  134. /* BEGIN_DEPENDENCIES
  135. * depends_on:MBEDTLS_GCM_C
  136. * END_DEPENDENCIES
  137. */
  138. /* BEGIN_CASE */
  139. void gcm_bad_parameters(int cipher_id, int direction,
  140. data_t *key_str, data_t *src_str,
  141. data_t *iv_str, data_t *add_str,
  142. int tag_len_bits, int gcm_result)
  143. {
  144. unsigned char output[128];
  145. unsigned char tag_output[16];
  146. mbedtls_gcm_context ctx;
  147. size_t tag_len = tag_len_bits / 8;
  148. mbedtls_gcm_init(&ctx);
  149. memset(output, 0x00, sizeof(output));
  150. memset(tag_output, 0x00, sizeof(tag_output));
  151. TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == 0);
  152. TEST_ASSERT(mbedtls_gcm_crypt_and_tag(&ctx, direction, src_str->len, iv_str->x, iv_str->len,
  153. add_str->x, add_str->len, src_str->x, output, tag_len,
  154. tag_output) == gcm_result);
  155. exit:
  156. mbedtls_gcm_free(&ctx);
  157. }
  158. /* END_CASE */
  159. /* BEGIN_CASE */
  160. void gcm_encrypt_and_tag(int cipher_id, data_t *key_str,
  161. data_t *src_str, data_t *iv_str,
  162. data_t *add_str, data_t *dst,
  163. int tag_len_bits, data_t *tag,
  164. int init_result)
  165. {
  166. unsigned char output[128];
  167. unsigned char tag_output[16];
  168. mbedtls_gcm_context ctx;
  169. size_t tag_len = tag_len_bits / 8;
  170. size_t n1;
  171. size_t n1_add;
  172. mbedtls_gcm_init(&ctx);
  173. memset(output, 0x00, 128);
  174. memset(tag_output, 0x00, 16);
  175. TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == init_result);
  176. if (init_result == 0) {
  177. TEST_ASSERT(mbedtls_gcm_crypt_and_tag(&ctx, MBEDTLS_GCM_ENCRYPT, src_str->len, iv_str->x,
  178. iv_str->len, add_str->x, add_str->len, src_str->x,
  179. output, tag_len, tag_output) == 0);
  180. ASSERT_COMPARE(output, src_str->len, dst->x, dst->len);
  181. ASSERT_COMPARE(tag_output, tag_len, tag->x, tag->len);
  182. for (n1 = 0; n1 <= src_str->len; n1 += 1) {
  183. for (n1_add = 0; n1_add <= add_str->len; n1_add += 1) {
  184. mbedtls_test_set_step(n1 * 10000 + n1_add);
  185. if (!check_multipart(&ctx, MBEDTLS_GCM_ENCRYPT,
  186. iv_str, add_str, src_str,
  187. dst, tag,
  188. n1, n1_add)) {
  189. goto exit;
  190. }
  191. }
  192. }
  193. }
  194. exit:
  195. mbedtls_gcm_free(&ctx);
  196. }
  197. /* END_CASE */
  198. /* BEGIN_CASE */
  199. void gcm_decrypt_and_verify(int cipher_id, data_t *key_str,
  200. data_t *src_str, data_t *iv_str,
  201. data_t *add_str, int tag_len_bits,
  202. data_t *tag_str, char *result,
  203. data_t *pt_result, int init_result)
  204. {
  205. unsigned char output[128];
  206. mbedtls_gcm_context ctx;
  207. int ret;
  208. size_t tag_len = tag_len_bits / 8;
  209. size_t n1;
  210. size_t n1_add;
  211. mbedtls_gcm_init(&ctx);
  212. memset(output, 0x00, 128);
  213. TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == init_result);
  214. if (init_result == 0) {
  215. ret = mbedtls_gcm_auth_decrypt(&ctx,
  216. src_str->len,
  217. iv_str->x,
  218. iv_str->len,
  219. add_str->x,
  220. add_str->len,
  221. tag_str->x,
  222. tag_len,
  223. src_str->x,
  224. output);
  225. if (strcmp("FAIL", result) == 0) {
  226. TEST_ASSERT(ret == MBEDTLS_ERR_GCM_AUTH_FAILED);
  227. } else {
  228. TEST_ASSERT(ret == 0);
  229. ASSERT_COMPARE(output, src_str->len, pt_result->x, pt_result->len);
  230. for (n1 = 0; n1 <= src_str->len; n1 += 1) {
  231. for (n1_add = 0; n1_add <= add_str->len; n1_add += 1) {
  232. mbedtls_test_set_step(n1 * 10000 + n1_add);
  233. if (!check_multipart(&ctx, MBEDTLS_GCM_DECRYPT,
  234. iv_str, add_str, src_str,
  235. pt_result, tag_str,
  236. n1, n1_add)) {
  237. goto exit;
  238. }
  239. }
  240. }
  241. }
  242. }
  243. exit:
  244. mbedtls_gcm_free(&ctx);
  245. }
  246. /* END_CASE */
  247. /* BEGIN_CASE */
  248. void gcm_decrypt_and_verify_empty_cipher(int cipher_id,
  249. data_t *key_str,
  250. data_t *iv_str,
  251. data_t *add_str,
  252. data_t *tag_str,
  253. int cipher_update_calls)
  254. {
  255. mbedtls_gcm_context ctx;
  256. mbedtls_gcm_init(&ctx);
  257. TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == 0);
  258. check_empty_cipher_with_ad(&ctx, MBEDTLS_GCM_DECRYPT,
  259. iv_str, add_str, tag_str,
  260. cipher_update_calls);
  261. mbedtls_gcm_free(&ctx);
  262. }
  263. /* END_CASE */
  264. /* BEGIN_CASE */
  265. void gcm_decrypt_and_verify_empty_ad(int cipher_id,
  266. data_t *key_str,
  267. data_t *iv_str,
  268. data_t *src_str,
  269. data_t *tag_str,
  270. data_t *pt_result,
  271. int ad_update_calls)
  272. {
  273. mbedtls_gcm_context ctx;
  274. mbedtls_gcm_init(&ctx);
  275. TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == 0);
  276. check_cipher_with_empty_ad(&ctx, MBEDTLS_GCM_DECRYPT,
  277. iv_str, src_str, pt_result, tag_str,
  278. ad_update_calls);
  279. mbedtls_gcm_free(&ctx);
  280. }
  281. /* END_CASE */
  282. /* BEGIN_CASE */
  283. void gcm_decrypt_and_verify_no_ad_no_cipher(int cipher_id,
  284. data_t *key_str,
  285. data_t *iv_str,
  286. data_t *tag_str)
  287. {
  288. mbedtls_gcm_context ctx;
  289. mbedtls_gcm_init(&ctx);
  290. TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == 0);
  291. check_no_cipher_no_ad(&ctx, MBEDTLS_GCM_DECRYPT,
  292. iv_str, tag_str);
  293. mbedtls_gcm_free(&ctx);
  294. }
  295. /* END_CASE */
  296. /* BEGIN_CASE */
  297. void gcm_encrypt_and_tag_empty_cipher(int cipher_id,
  298. data_t *key_str,
  299. data_t *iv_str,
  300. data_t *add_str,
  301. data_t *tag_str,
  302. int cipher_update_calls)
  303. {
  304. mbedtls_gcm_context ctx;
  305. mbedtls_gcm_init(&ctx);
  306. TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == 0);
  307. check_empty_cipher_with_ad(&ctx, MBEDTLS_GCM_ENCRYPT,
  308. iv_str, add_str, tag_str,
  309. cipher_update_calls);
  310. exit:
  311. mbedtls_gcm_free(&ctx);
  312. }
  313. /* END_CASE */
  314. /* BEGIN_CASE */
  315. void gcm_encrypt_and_tag_empty_ad(int cipher_id,
  316. data_t *key_str,
  317. data_t *iv_str,
  318. data_t *src_str,
  319. data_t *dst,
  320. data_t *tag_str,
  321. int ad_update_calls)
  322. {
  323. mbedtls_gcm_context ctx;
  324. mbedtls_gcm_init(&ctx);
  325. TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == 0);
  326. check_cipher_with_empty_ad(&ctx, MBEDTLS_GCM_ENCRYPT,
  327. iv_str, src_str, dst, tag_str,
  328. ad_update_calls);
  329. exit:
  330. mbedtls_gcm_free(&ctx);
  331. }
  332. /* END_CASE */
  333. /* BEGIN_CASE */
  334. void gcm_encrypt_and_verify_no_ad_no_cipher(int cipher_id,
  335. data_t *key_str,
  336. data_t *iv_str,
  337. data_t *tag_str)
  338. {
  339. mbedtls_gcm_context ctx;
  340. mbedtls_gcm_init(&ctx);
  341. TEST_ASSERT(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8) == 0);
  342. check_no_cipher_no_ad(&ctx, MBEDTLS_GCM_ENCRYPT,
  343. iv_str, tag_str);
  344. mbedtls_gcm_free(&ctx);
  345. }
  346. /* END_CASE */
  347. /* BEGIN_CASE */
  348. void gcm_invalid_param()
  349. {
  350. mbedtls_gcm_context ctx;
  351. unsigned char valid_buffer[] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 };
  352. mbedtls_cipher_id_t valid_cipher = MBEDTLS_CIPHER_ID_AES;
  353. int invalid_bitlen = 1;
  354. mbedtls_gcm_init(&ctx);
  355. /* mbedtls_gcm_setkey */
  356. TEST_EQUAL(
  357. MBEDTLS_ERR_GCM_BAD_INPUT,
  358. mbedtls_gcm_setkey(&ctx, valid_cipher, valid_buffer, invalid_bitlen));
  359. exit:
  360. mbedtls_gcm_free(&ctx);
  361. }
  362. /* END_CASE */
  363. /* BEGIN_CASE */
  364. void gcm_update_output_buffer_too_small(int cipher_id, int mode,
  365. data_t *key_str, const data_t *input,
  366. const data_t *iv)
  367. {
  368. mbedtls_gcm_context ctx;
  369. uint8_t *output = NULL;
  370. size_t olen = 0;
  371. size_t output_len = input->len - 1;
  372. mbedtls_gcm_init(&ctx);
  373. TEST_EQUAL(mbedtls_gcm_setkey(&ctx, cipher_id, key_str->x, key_str->len * 8), 0);
  374. TEST_EQUAL(0, mbedtls_gcm_starts(&ctx, mode, iv->x, iv->len));
  375. ASSERT_ALLOC(output, output_len);
  376. TEST_EQUAL(MBEDTLS_ERR_GCM_BUFFER_TOO_SMALL,
  377. mbedtls_gcm_update(&ctx, input->x, input->len, output, output_len, &olen));
  378. exit:
  379. mbedtls_free(output);
  380. mbedtls_gcm_free(&ctx);
  381. }
  382. /* END_CASE */
  383. /* BEGIN_CASE depends_on:MBEDTLS_SELF_TEST:MBEDTLS_AES_C */
  384. void gcm_selftest()
  385. {
  386. TEST_ASSERT(mbedtls_gcm_self_test(1) == 0);
  387. }
  388. /* END_CASE */