123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545 |
- /* ecc.h - TinyCrypt interface to common ECC functions */
- /* Copyright (c) 2014, Kenneth MacKay
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * * Redistributions of source code must retain the above copyright notice, this
- * list of conditions and the following disclaimer.
- *
- * * Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- */
- /*
- * Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * - Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- *
- * - Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * - Neither the name of Intel Corporation nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- */
- /**
- * @file
- * @brief -- Interface to common ECC functions.
- *
- * Overview: This software is an implementation of common functions
- * necessary to elliptic curve cryptography. This implementation uses
- * curve NIST p-256.
- *
- * Security: The curve NIST p-256 provides approximately 128 bits of security.
- *
- */
- #ifndef __TC_UECC_H__
- #define __TC_UECC_H__
- #include <stdint.h>
- #ifdef __cplusplus
- extern "C" {
- #endif
- /* Word size (4 bytes considering 32-bits architectures) */
- #define uECC_WORD_SIZE 4
- /* setting max number of calls to prng: */
- #ifndef uECC_RNG_MAX_TRIES
- #define uECC_RNG_MAX_TRIES 64
- #endif
- /* defining data types to store word and bit counts: */
- typedef int8_t wordcount_t;
- typedef int16_t bitcount_t;
- /* defining data type for comparison result: */
- typedef int8_t cmpresult_t;
- /* defining data type to store ECC coordinate/point in 32bits words: */
- typedef unsigned int uECC_word_t;
- /* defining data type to store an ECC coordinate/point in 64bits words: */
- typedef uint64_t uECC_dword_t;
- /* defining masks useful for ecc computations: */
- #define HIGH_BIT_SET 0x80000000
- #define uECC_WORD_BITS 32
- #define uECC_WORD_BITS_SHIFT 5
- #define uECC_WORD_BITS_MASK 0x01F
- /* Number of words of 32 bits to represent an element of the the curve p-256: */
- #define NUM_ECC_WORDS 8
- /* Number of bytes to represent an element of the the curve p-256: */
- #define NUM_ECC_BYTES (uECC_WORD_SIZE*NUM_ECC_WORDS)
- /* structure that represents an elliptic curve (e.g. p256):*/
- struct uECC_Curve_t;
- typedef const struct uECC_Curve_t * uECC_Curve;
- struct uECC_Curve_t {
- wordcount_t num_words;
- wordcount_t num_bytes;
- bitcount_t num_n_bits;
- uECC_word_t p[NUM_ECC_WORDS];
- uECC_word_t n[NUM_ECC_WORDS];
- uECC_word_t G[NUM_ECC_WORDS * 2];
- uECC_word_t b[NUM_ECC_WORDS];
- void (*double_jacobian)(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * Z1,
- uECC_Curve curve);
- void (*x_side)(uECC_word_t *result, const uECC_word_t *x, uECC_Curve curve);
- void (*mmod_fast)(uECC_word_t *result, uECC_word_t *product);
- };
- /*
- * @brief computes doubling of point ion jacobian coordinates, in place.
- * @param X1 IN/OUT -- x coordinate
- * @param Y1 IN/OUT -- y coordinate
- * @param Z1 IN/OUT -- z coordinate
- * @param curve IN -- elliptic curve
- */
- void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1,
- uECC_word_t * Z1, uECC_Curve curve);
- /*
- * @brief Computes x^3 + ax + b. result must not overlap x.
- * @param result OUT -- x^3 + ax + b
- * @param x IN -- value of x
- * @param curve IN -- elliptic curve
- */
- void x_side_default(uECC_word_t *result, const uECC_word_t *x,
- uECC_Curve curve);
- /*
- * @brief Computes result = product % curve_p
- * from http://www.nsa.gov/ia/_files/nist-routines.pdf
- * @param result OUT -- product % curve_p
- * @param product IN -- value to be reduced mod curve_p
- */
- void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int *product);
- /* Bytes to words ordering: */
- #define BYTES_TO_WORDS_8(a, b, c, d, e, f, g, h) 0x##d##c##b##a, 0x##h##g##f##e
- #define BYTES_TO_WORDS_4(a, b, c, d) 0x##d##c##b##a
- #define BITS_TO_WORDS(num_bits) \
- ((num_bits + ((uECC_WORD_SIZE * 8) - 1)) / (uECC_WORD_SIZE * 8))
- #define BITS_TO_BYTES(num_bits) ((num_bits + 7) / 8)
- /* definition of curve NIST p-256: */
- static const struct uECC_Curve_t curve_secp256r1 = {
- NUM_ECC_WORDS,
- NUM_ECC_BYTES,
- 256, /* num_n_bits */ {
- BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
- BYTES_TO_WORDS_8(FF, FF, FF, FF, 00, 00, 00, 00),
- BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00),
- BYTES_TO_WORDS_8(01, 00, 00, 00, FF, FF, FF, FF)
- }, {
- BYTES_TO_WORDS_8(51, 25, 63, FC, C2, CA, B9, F3),
- BYTES_TO_WORDS_8(84, 9E, 17, A7, AD, FA, E6, BC),
- BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
- BYTES_TO_WORDS_8(00, 00, 00, 00, FF, FF, FF, FF)
- }, {
- BYTES_TO_WORDS_8(96, C2, 98, D8, 45, 39, A1, F4),
- BYTES_TO_WORDS_8(A0, 33, EB, 2D, 81, 7D, 03, 77),
- BYTES_TO_WORDS_8(F2, 40, A4, 63, E5, E6, BC, F8),
- BYTES_TO_WORDS_8(47, 42, 2C, E1, F2, D1, 17, 6B),
- BYTES_TO_WORDS_8(F5, 51, BF, 37, 68, 40, B6, CB),
- BYTES_TO_WORDS_8(CE, 5E, 31, 6B, 57, 33, CE, 2B),
- BYTES_TO_WORDS_8(16, 9E, 0F, 7C, 4A, EB, E7, 8E),
- BYTES_TO_WORDS_8(9B, 7F, 1A, FE, E2, 42, E3, 4F)
- }, {
- BYTES_TO_WORDS_8(4B, 60, D2, 27, 3E, 3C, CE, 3B),
- BYTES_TO_WORDS_8(F6, B0, 53, CC, B0, 06, 1D, 65),
- BYTES_TO_WORDS_8(BC, 86, 98, 76, 55, BD, EB, B3),
- BYTES_TO_WORDS_8(E7, 93, 3A, AA, D8, 35, C6, 5A)
- },
- &double_jacobian_default,
- &x_side_default,
- &vli_mmod_fast_secp256r1
- };
- uECC_Curve uECC_secp256r1(void);
- /*
- * @brief Generates a random integer in the range 0 < random < top.
- * Both random and top have num_words words.
- * @param random OUT -- random integer in the range 0 < random < top
- * @param top IN -- upper limit
- * @param num_words IN -- number of words
- * @return a random integer in the range 0 < random < top
- */
- int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top,
- wordcount_t num_words);
- /* uECC_RNG_Function type
- * The RNG function should fill 'size' random bytes into 'dest'. It should
- * return 1 if 'dest' was filled with random data, or 0 if the random data could
- * not be generated. The filled-in values should be either truly random, or from
- * a cryptographically-secure PRNG.
- *
- * A correctly functioning RNG function must be set (using uECC_set_rng())
- * before calling uECC_make_key() or uECC_sign().
- *
- * Setting a correctly functioning RNG function improves the resistance to
- * side-channel attacks for uECC_shared_secret().
- *
- * A correct RNG function is set by default. If you are building on another
- * POSIX-compliant system that supports /dev/random or /dev/urandom, you can
- * define uECC_POSIX to use the predefined RNG.
- */
- typedef int(*uECC_RNG_Function)(uint8_t *dest, unsigned int size);
- /*
- * @brief Set the function that will be used to generate random bytes. The RNG
- * function should return 1 if the random data was generated, or 0 if the random
- * data could not be generated.
- *
- * @note On platforms where there is no predefined RNG function, this must be
- * called before uECC_make_key() or uECC_sign() are used.
- *
- * @param rng_function IN -- function that will be used to generate random bytes
- */
- void uECC_set_rng(uECC_RNG_Function rng_function);
- /*
- * @brief provides current uECC_RNG_Function.
- * @return Returns the function that will be used to generate random bytes.
- */
- uECC_RNG_Function uECC_get_rng(void);
- /*
- * @brief computes the size of a private key for the curve in bytes.
- * @param curve IN -- elliptic curve
- * @return size of a private key for the curve in bytes.
- */
- int uECC_curve_private_key_size(uECC_Curve curve);
- /*
- * @brief computes the size of a public key for the curve in bytes.
- * @param curve IN -- elliptic curve
- * @return the size of a public key for the curve in bytes.
- */
- int uECC_curve_public_key_size(uECC_Curve curve);
- /*
- * @brief Compute the corresponding public key for a private key.
- * @param private_key IN -- The private key to compute the public key for
- * @param public_key OUT -- Will be filled in with the corresponding public key
- * @param curve
- * @return Returns 1 if key was computed successfully, 0 if an error occurred.
- */
- int uECC_compute_public_key(const uint8_t *private_key,
- uint8_t *public_key, uECC_Curve curve);
- /*
- * @brief Compute public-key.
- * @return corresponding public-key.
- * @param result OUT -- public-key
- * @param private_key IN -- private-key
- * @param curve IN -- elliptic curve
- */
- uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
- uECC_word_t *private_key, uECC_Curve curve);
- /*
- * @brief Regularize the bitcount for the private key so that attackers cannot
- * use a side channel attack to learn the number of leading zeros.
- * @return Regularized k
- * @param k IN -- private-key
- * @param k0 IN/OUT -- regularized k
- * @param k1 IN/OUT -- regularized k
- * @param curve IN -- elliptic curve
- */
- uECC_word_t regularize_k(const uECC_word_t * const k, uECC_word_t *k0,
- uECC_word_t *k1, uECC_Curve curve);
- /*
- * @brief Point multiplication algorithm using Montgomery's ladder with co-Z
- * coordinates. See http://eprint.iacr.org/2011/338.pdf.
- * @note Result may overlap point.
- * @param result OUT -- returns scalar*point
- * @param point IN -- elliptic curve point
- * @param scalar IN -- scalar
- * @param initial_Z IN -- initial value for z
- * @param num_bits IN -- number of bits in scalar
- * @param curve IN -- elliptic curve
- */
- void EccPoint_mult(uECC_word_t * result, const uECC_word_t * point,
- const uECC_word_t * scalar, const uECC_word_t * initial_Z,
- bitcount_t num_bits, uECC_Curve curve);
- /*
- * @brief Constant-time comparison to zero - secure way to compare long integers
- * @param vli IN -- very long integer
- * @param num_words IN -- number of words in the vli
- * @return 1 if vli == 0, 0 otherwise.
- */
- uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words);
- /*
- * @brief Check if 'point' is the point at infinity
- * @param point IN -- elliptic curve point
- * @param curve IN -- elliptic curve
- * @return if 'point' is the point at infinity, 0 otherwise.
- */
- uECC_word_t EccPoint_isZero(const uECC_word_t *point, uECC_Curve curve);
- /*
- * @brief computes the sign of left - right, in constant time.
- * @param left IN -- left term to be compared
- * @param right IN -- right term to be compared
- * @param num_words IN -- number of words
- * @return the sign of left - right
- */
- cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right,
- wordcount_t num_words);
- /*
- * @brief computes sign of left - right, not in constant time.
- * @note should not be used if inputs are part of a secret
- * @param left IN -- left term to be compared
- * @param right IN -- right term to be compared
- * @param num_words IN -- number of words
- * @return the sign of left - right
- */
- cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, const uECC_word_t *right,
- wordcount_t num_words);
- /*
- * @brief Computes result = (left - right) % mod.
- * @note Assumes that (left < mod) and (right < mod), and that result does not
- * overlap mod.
- * @param result OUT -- (left - right) % mod
- * @param left IN -- leftright term in modular subtraction
- * @param right IN -- right term in modular subtraction
- * @param mod IN -- mod
- * @param num_words IN -- number of words
- */
- void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left,
- const uECC_word_t *right, const uECC_word_t *mod,
- wordcount_t num_words);
- /*
- * @brief Computes P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) or
- * P => P', Q => P + Q
- * @note assumes Input P = (x1, y1, Z), Q = (x2, y2, Z)
- * @param X1 IN -- x coordinate of P
- * @param Y1 IN -- y coordinate of P
- * @param X2 IN -- x coordinate of Q
- * @param Y2 IN -- y coordinate of Q
- * @param curve IN -- elliptic curve
- */
- void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * X2,
- uECC_word_t * Y2, uECC_Curve curve);
- /*
- * @brief Computes (x1 * z^2, y1 * z^3)
- * @param X1 IN -- previous x1 coordinate
- * @param Y1 IN -- previous y1 coordinate
- * @param Z IN -- z value
- * @param curve IN -- elliptic curve
- */
- void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z,
- uECC_Curve curve);
- /*
- * @brief Check if bit is set.
- * @return Returns nonzero if bit 'bit' of vli is set.
- * @warning It is assumed that the value provided in 'bit' is within the
- * boundaries of the word-array 'vli'.
- * @note The bit ordering layout assumed for vli is: {31, 30, ..., 0},
- * {63, 62, ..., 32}, {95, 94, ..., 64}, {127, 126,..., 96} for a vli consisting
- * of 4 uECC_word_t elements.
- */
- uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit);
- /*
- * @brief Computes result = product % mod, where product is 2N words long.
- * @param result OUT -- product % mod
- * @param mod IN -- module
- * @param num_words IN -- number of words
- * @warning Currently only designed to work for curve_p or curve_n.
- */
- void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product,
- const uECC_word_t *mod, wordcount_t num_words);
- /*
- * @brief Computes modular product (using curve->mmod_fast)
- * @param result OUT -- (left * right) mod % curve_p
- * @param left IN -- left term in product
- * @param right IN -- right term in product
- * @param curve IN -- elliptic curve
- */
- void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left,
- const uECC_word_t *right, uECC_Curve curve);
- /*
- * @brief Computes result = left - right.
- * @note Can modify in place.
- * @param result OUT -- left - right
- * @param left IN -- left term in subtraction
- * @param right IN -- right term in subtraction
- * @param num_words IN -- number of words
- * @return borrow
- */
- uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left,
- const uECC_word_t *right, wordcount_t num_words);
- /*
- * @brief Constant-time comparison function(secure way to compare long ints)
- * @param left IN -- left term in comparison
- * @param right IN -- right term in comparison
- * @param num_words IN -- number of words
- * @return Returns 0 if left == right, 1 otherwise.
- */
- uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right,
- wordcount_t num_words);
- /*
- * @brief Computes (left * right) % mod
- * @param result OUT -- (left * right) % mod
- * @param left IN -- left term in product
- * @param right IN -- right term in product
- * @param mod IN -- mod
- * @param num_words IN -- number of words
- */
- void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left,
- const uECC_word_t *right, const uECC_word_t *mod,
- wordcount_t num_words);
- /*
- * @brief Computes (1 / input) % mod
- * @note All VLIs are the same size.
- * @note See "Euclid's GCD to Montgomery Multiplication to the Great Divide"
- * @param result OUT -- (1 / input) % mod
- * @param input IN -- value to be modular inverted
- * @param mod IN -- mod
- * @param num_words -- number of words
- */
- void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input,
- const uECC_word_t *mod, wordcount_t num_words);
- /*
- * @brief Sets dest = src.
- * @param dest OUT -- destination buffer
- * @param src IN -- origin buffer
- * @param num_words IN -- number of words
- */
- void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src,
- wordcount_t num_words);
- /*
- * @brief Computes (left + right) % mod.
- * @note Assumes that (left < mod) and right < mod), and that result does not
- * overlap mod.
- * @param result OUT -- (left + right) % mod.
- * @param left IN -- left term in addition
- * @param right IN -- right term in addition
- * @param mod IN -- mod
- * @param num_words IN -- number of words
- */
- void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left,
- const uECC_word_t *right, const uECC_word_t *mod,
- wordcount_t num_words);
- /*
- * @brief Counts the number of bits required to represent vli.
- * @param vli IN -- very long integer
- * @param max_words IN -- number of words
- * @return number of bits in given vli
- */
- bitcount_t uECC_vli_numBits(const uECC_word_t *vli,
- const wordcount_t max_words);
- /*
- * @brief Erases (set to 0) vli
- * @param vli IN -- very long integer
- * @param num_words IN -- number of words
- */
- void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words);
- /*
- * @brief check if it is a valid point in the curve
- * @param point IN -- point to be checked
- * @param curve IN -- elliptic curve
- * @return 0 if point is valid
- * @exception returns -1 if it is a point at infinity
- * @exception returns -2 if x or y is smaller than p,
- * @exception returns -3 if y^2 != x^3 + ax + b.
- */
- int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve);
- /*
- * @brief Check if a public key is valid.
- * @param public_key IN -- The public key to be checked.
- * @return returns 0 if the public key is valid
- * @exception returns -1 if it is a point at infinity
- * @exception returns -2 if x or y is smaller than p,
- * @exception returns -3 if y^2 != x^3 + ax + b.
- * @exception returns -4 if public key is the group generator.
- *
- * @note Note that you are not required to check for a valid public key before
- * using any other uECC functions. However, you may wish to avoid spending CPU
- * time computing a shared secret or verifying a signature using an invalid
- * public key.
- */
- int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve);
- /*
- * @brief Converts an integer in uECC native format to big-endian bytes.
- * @param bytes OUT -- bytes representation
- * @param num_bytes IN -- number of bytes
- * @param native IN -- uECC native representation
- */
- void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
- const unsigned int *native);
- /*
- * @brief Converts big-endian bytes to an integer in uECC native format.
- * @param native OUT -- uECC native representation
- * @param bytes IN -- bytes representation
- * @param num_bytes IN -- number of bytes
- */
- void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes,
- int num_bytes);
- #ifdef __cplusplus
- }
- #endif
- #endif /* __TC_UECC_H__ */
|