123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254 |
- /* cmac_mode.c - TinyCrypt CMAC mode implementation */
- /*
- * Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * - Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- *
- * - Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * - Neither the name of Intel Corporation nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- */
- #include <tinycrypt/aes.h>
- #include <tinycrypt/cmac_mode.h>
- #include <tinycrypt/constants.h>
- #include <tinycrypt/utils.h>
- /* max number of calls until change the key (2^48).*/
- const static uint64_t MAX_CALLS = ((uint64_t)1 << 48);
- /*
- * gf_wrap -- In our implementation, GF(2^128) is represented as a 16 byte
- * array with byte 0 the most significant and byte 15 the least significant.
- * High bit carry reduction is based on the primitive polynomial
- *
- * X^128 + X^7 + X^2 + X + 1,
- *
- * which leads to the reduction formula X^128 = X^7 + X^2 + X + 1. Indeed,
- * since 0 = (X^128 + X^7 + X^2 + 1) mod (X^128 + X^7 + X^2 + X + 1) and since
- * addition of polynomials with coefficients in Z/Z(2) is just XOR, we can
- * add X^128 to both sides to get
- *
- * X^128 = (X^7 + X^2 + X + 1) mod (X^128 + X^7 + X^2 + X + 1)
- *
- * and the coefficients of the polynomial on the right hand side form the
- * string 1000 0111 = 0x87, which is the value of gf_wrap.
- *
- * This gets used in the following way. Doubling in GF(2^128) is just a left
- * shift by 1 bit, except when the most significant bit is 1. In the latter
- * case, the relation X^128 = X^7 + X^2 + X + 1 says that the high order bit
- * that overflows beyond 128 bits can be replaced by addition of
- * X^7 + X^2 + X + 1 <--> 0x87 to the low order 128 bits. Since addition
- * in GF(2^128) is represented by XOR, we therefore only have to XOR 0x87
- * into the low order byte after a left shift when the starting high order
- * bit is 1.
- */
- const unsigned char gf_wrap = 0x87;
- /*
- * assumes: out != NULL and points to a GF(2^n) value to receive the
- * doubled value;
- * in != NULL and points to a 16 byte GF(2^n) value
- * to double;
- * the in and out buffers do not overlap.
- * effects: doubles the GF(2^n) value pointed to by "in" and places
- * the result in the GF(2^n) value pointed to by "out."
- */
- void gf_double(uint8_t *out, uint8_t *in)
- {
- /* start with low order byte */
- uint8_t *x = in + (TC_AES_BLOCK_SIZE - 1);
- /* if msb == 1, we need to add the gf_wrap value, otherwise add 0 */
- uint8_t carry = (in[0] >> 7) ? gf_wrap : 0;
- out += (TC_AES_BLOCK_SIZE - 1);
- for (;;) {
- *out-- = (*x << 1) ^ carry;
- if (x == in) {
- break;
- }
- carry = *x-- >> 7;
- }
- }
- int tc_cmac_setup(TCCmacState_t s, const uint8_t *key, TCAesKeySched_t sched)
- {
- /* input sanity check: */
- if (s == (TCCmacState_t) 0 ||
- key == (const uint8_t *) 0) {
- return TC_CRYPTO_FAIL;
- }
- /* put s into a known state */
- _set(s, 0, sizeof(*s));
- s->sched = sched;
- /* configure the encryption key used by the underlying block cipher */
- tc_aes128_set_encrypt_key(s->sched, key);
- /* compute s->K1 and s->K2 from s->iv using s->keyid */
- _set(s->iv, 0, TC_AES_BLOCK_SIZE);
- tc_aes_encrypt(s->iv, s->iv, s->sched);
- gf_double (s->K1, s->iv);
- gf_double (s->K2, s->K1);
- /* reset s->iv to 0 in case someone wants to compute now */
- tc_cmac_init(s);
- return TC_CRYPTO_SUCCESS;
- }
- int tc_cmac_erase(TCCmacState_t s)
- {
- if (s == (TCCmacState_t) 0) {
- return TC_CRYPTO_FAIL;
- }
- /* destroy the current state */
- _set(s, 0, sizeof(*s));
- return TC_CRYPTO_SUCCESS;
- }
- int tc_cmac_init(TCCmacState_t s)
- {
- /* input sanity check: */
- if (s == (TCCmacState_t) 0) {
- return TC_CRYPTO_FAIL;
- }
- /* CMAC starts with an all zero initialization vector */
- _set(s->iv, 0, TC_AES_BLOCK_SIZE);
- /* and the leftover buffer is empty */
- _set(s->leftover, 0, TC_AES_BLOCK_SIZE);
- s->leftover_offset = 0;
- /* Set countdown to max number of calls allowed before re-keying: */
- s->countdown = MAX_CALLS;
- return TC_CRYPTO_SUCCESS;
- }
- int tc_cmac_update(TCCmacState_t s, const uint8_t *data, size_t data_length)
- {
- unsigned int i;
- /* input sanity check: */
- if (s == (TCCmacState_t) 0) {
- return TC_CRYPTO_FAIL;
- }
- if (data_length == 0) {
- return TC_CRYPTO_SUCCESS;
- }
- if (data == (const uint8_t *) 0) {
- return TC_CRYPTO_FAIL;
- }
- if (s->countdown == 0) {
- return TC_CRYPTO_FAIL;
- }
- s->countdown--;
- if (s->leftover_offset > 0) {
- /* last data added to s didn't end on a TC_AES_BLOCK_SIZE byte boundary */
- size_t remaining_space = TC_AES_BLOCK_SIZE - s->leftover_offset;
- if (data_length < remaining_space) {
- /* still not enough data to encrypt this time either */
- _copy(&s->leftover[s->leftover_offset], data_length, data, data_length);
- s->leftover_offset += data_length;
- return TC_CRYPTO_SUCCESS;
- }
- /* leftover block is now full; encrypt it first */
- _copy(&s->leftover[s->leftover_offset],
- remaining_space,
- data,
- remaining_space);
- data_length -= remaining_space;
- data += remaining_space;
- s->leftover_offset = 0;
- for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
- s->iv[i] ^= s->leftover[i];
- }
- tc_aes_encrypt(s->iv, s->iv, s->sched);
- }
- /* CBC encrypt each (except the last) of the data blocks */
- while (data_length > TC_AES_BLOCK_SIZE) {
- for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
- s->iv[i] ^= data[i];
- }
- tc_aes_encrypt(s->iv, s->iv, s->sched);
- data += TC_AES_BLOCK_SIZE;
- data_length -= TC_AES_BLOCK_SIZE;
- }
- if (data_length > 0) {
- /* save leftover data for next time */
- _copy(s->leftover, data_length, data, data_length);
- s->leftover_offset = data_length;
- }
- return TC_CRYPTO_SUCCESS;
- }
- int tc_cmac_final(uint8_t *tag, TCCmacState_t s)
- {
- uint8_t *k;
- unsigned int i;
- /* input sanity check: */
- if (tag == (uint8_t *) 0 ||
- s == (TCCmacState_t) 0) {
- return TC_CRYPTO_FAIL;
- }
- if (s->leftover_offset == TC_AES_BLOCK_SIZE) {
- /* the last message block is a full-sized block */
- k = (uint8_t *) s->K1;
- } else {
- /* the final message block is not a full-sized block */
- size_t remaining = TC_AES_BLOCK_SIZE - s->leftover_offset;
- _set(&s->leftover[s->leftover_offset], 0, remaining);
- s->leftover[s->leftover_offset] = TC_CMAC_PADDING;
- k = (uint8_t *) s->K2;
- }
- for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
- s->iv[i] ^= s->leftover[i] ^ k[i];
- }
- tc_aes_encrypt(tag, s->iv, s->sched);
- /* erasing state: */
- tc_cmac_erase(s);
- return TC_CRYPTO_SUCCESS;
- }
|